1

ATF開発に向けた基礎研究とその展開

Development of Metal-Coated Zircaloy for Accident-Tolerant Fuels

Hiroaki ABE The University of Tokyo

Collaborators:

The Univ Tokyo:	K. Takanabe, A. Nakayama, S. Kano,
	H.L. Yang (Shanghai Jiaotong University),
	L.J. Cui (Chengdu Univ.), K.J. Wei, B.Li,
	N. Nikolova, Z.Q. Wei, J.A. Jovellana
Tohoku Univ:	Y. Chen, T. Davey
JAEA:	M. Yamaguchi
MHI (NDC):	K. Ogata, Y. Shinohara

Contents

- 1. Background and Purpose
- 2. Structure of this project
- 3. Alloy design
- 4. Cr/Zircaloy bonding
- 5. Corrosion properties and surface reactions
- 6. Irradiation effects
- 7. Mechanical tests
 - A-EDC test
 - in-situ tensile and bending test
- 8. Summary

Accident Tolerant Fuels (ATFs)

OECD/NEA and AESJ

	integrity	tech level	terms
 modified zircaloy 	mid	high	short
Cr-coated Zr-alloy	mid	low \sim high	<mark>short</mark>
 Zr-coated Mo-alloy 	?	low	$mid\simlong$
FeAlCr、ODS	high	low \sim mid	mid
 SiC composite 	very high	low	very long

The Cr-coated Zr alloy incorporates the idea of suppressing reactions with other parts at high temperature. Since Zr alloys are practical materials for industrial use, it is expected as the highest possible and near-term introduction in commercial nuclear plants.

Cr被覆ジルコニウム合金の課題

structure of this project and roadmap

Contents

- 1. Background and Purpose
- 2. Structure of this project
- 3. 合金設計 Alloy design
- 4. 接合技術 Cr/Zircaloy bonding
- 5. 耐食性 Corrosion properties and surface reactions
- 6. 照射効果 Irradiation effects
- 7. 機械的性質 Mechanical tests
 - A-EDC test
 - その場測定 in-situ tensile and bending test

8. Summary

合金設計 (DFT)

Cr-X alloy as a coating material for ATF Basic idea on searching elements by DFT calculations

- X in bcc-Cr stable as solid solution (ΔE_f : small)
- X in hcp-Zr stable as solid solution (ΔE_f : small)
- X in $ZrCr_2$ destabilizes the Laves phase (ΔE_f : large)
- Small volume change due to doping to avoid strain and cracking
- Low neutron absorption cross section: requirement for nuclear

Sn, Zn, Mg $\Delta E_f(C15) < \Delta E_f(Cr)$, most likely migrate to Laves phase, act as suppressing elements.

Al

Cr-X

stable in both C15 and Cr, but $\Delta E_f(Cr)$ slightly $< \Delta E_f(C15)$, more like Al in bcc-Cr.

耐食性

Cr一水反応

残留酸素による水素発生の抑制

11

水素発生に対するCr₂O₃表面酸素空孔の効果

Cr/zircaloy 接合

Needs

• joining in the α -phase of Zry \rightarrow Low temperature joining

Concept of exp steps

- iffusion bonding β -phase \rightarrow accidental condition of NPP \neg Cr/Zry interface $\neg \alpha$ -phase \rightarrow normal operation condition diffusion bonding

 - \rightarrow clarify the reaction
- application of pulsed laser deposition for low-T joining
 - \rightarrow Developing fabrication concept

introducing excess vacancies to enhance diffusion/mixing non-equilibrium phase formation to achieve recrystallization at low-T

Materials	Cr	Fe	Sn	Zr
Cr	99.9	-	-	-
Zry-4	0.07~0.13	0.18~0.24	$1.2 \sim 1.7$	Bal.

拡散接合によるCr/Zry界面反応:Laves相 Zr(Fe,Cr)2の形成

パルスレーザー蒸着(PLD)法の応用

Cross section TEM of

Cr deposited Zry at ambient temperature

Nano crystalline layer formation Recrystallization temp. >400 $^{\circ}$ C

Amorphous layer formation was observed at shorter or milder deposition.

Recrystallization temp 300~400℃

Idea

Employ amorphous layer as the buffer layer at the Cr/Zry interface results in

- lower bonding temperature AND
- flatness improvement

PLD法による低温拡散接合

The amorphous layer seems less effective to the formation of Laves phase.

HIT, The Univ. Tokyo

試料作製 arc melting + anneal.

照射後分析 GIXRD SEM/EDS analysis FIB and TEM analysis nano-hardness

Laves相 Zr(Cr,Fe)₂の照射誘起非晶質化

180keV He \rightarrow Zr(Cr,Fe)₂ 5.5 dpa (peak)

Laves相 Zr(Cr,Fe)₂の非晶質化臨界線量

Crのイオン照射損傷

機械試験 (Advanced Expansion Due to Compression (A-EDC) test)

水素吸収効果(Zircaloy-4)

Hydrogen content [ppm]	Yield Stress [MPa]
0	<mark>899 ± 40</mark>
100	801± 8
400	<mark>1010± 77</mark>
800	912±122

 $\sigma_{\rm v}$ increased due to H

- Multiple necking observed.
- Necking become shallower with increasing the with increasing the hydrogen content.
- Fewer necking was evident in 800ppm.

Due to the texture structure of zry, platelet hydrides are formed along hoop direction. Less effective to the hoop strength.

Cr被覆Zry-4の曲げ試験とその場測定

High speed camera is set for in-situ obs. in bending/tensile.

AE sensors for detection of crack formation.

Crack formation and propagation on Cr side. AE detected the formation.

まとめ、総合討論

- Cr/Zry接合に成功した。界面反応による層状のLaves相形成を確認した。
- バッファ層として非晶質Crを用いることにより接合の低温化に成功した。

Crコートジルカロイ被覆管について、本研究成果より以下の提案がなされる。

- 製造工程においては界面に非晶質相を形成させることにより、より低温での接合 性を期待することができる。
- ただし、熱処理温度次第でキャビティの形成(未説明)も観察されたことから、熱処理条件には注意が必要。
- 異常条件では、界面にLaves相が層状に形成されることから、その影響評価は必要である。これは、製造法によらない。
- Laves相形成は拡散律速であることから、これに対する
 照射加速影響も懸念され、
 今後の課題としている。

※東大HITの実験装置群は共同利用としてご利用いただけます。

ご清聴ありがとうございました

阿部弘亨 abe.hiroaki@n.t.u-tokyo.ac.jp