FY2024 (2024.4-2025.3) NSEC Annual Report

Nuclear Science and Engineering Center Nuclear Science Research Institute Japan Atomic Energy Agency

October 2025

This report is issued by Japan Atomic Energy Agency.

Inquiries about availability and/or copyright of this report should be addressed to the Research Co-ordination and Promotion Office of the Nuclear Science and Engineering Center, Japan Atomic Energy Agency.

2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan.

E-mail: nsed-web@jaea.go.jp

© Japan Atomic Energy Agency, 2025

Table of Contents

Preface	1
R&D Highlights	2
Group Activities	9
Organization of NSEC	····· 10
Nuclear Data Center	····· 11
Research Group for Reactor Physics and Thermal-Hydraulics Technology	····· 13
Research Group for Nuclear Transmutation System	····· 14
Research Group for Corrosion Resistant Materials	····· 15
Research Group for Radiation Materials Engineering	····· 16
Research Group for High Temperature Science on Fuel Materials	····· 17
Research Group for Environmental Science	····· 18
Research Group for Radiation Transport Analysis	····· 19
Research Group for Nuclear Sensing	····· 12
Research Group for Nuclear Chemistry	····· 20
Development Group for Nuclear Engineering Technology	····· 21
Publication List	2

Preface

TSUJIMOTO Kazufumi

Director General, Nuclear Science and Engineering Center

The Nuclear Science and Engineering Center (NSEC) of the Japan Atomic Energy Agency (JAEA) aims to conduct research and development to advance the science and technology that supports the use of nuclear energy and radiation. This annual report provides research highlights and an overview of the research groups' activities in the NSEC for Fiscal Year 2024. We hope this annual report will increase your understanding of the NSEC.

The use of nuclear energy and radiation is supported by the underlying basic science and various technologies that link science and engineering. As such, we conduct fundamental research to elucidate various phenomena involving atomic nuclei, radiation, and radioactive materials using our innovative techniques for measurement and analysis. Based on modeling of the observed phenomena, we develop computer simulation codes and databases for predicting the behavior of energetic particles, heat and fluid in a reactor core, performance of nuclear fuel and reactor structural materials, properties and functions of radioactive materials related to their physical and chemical states, migration behavior of radionuclides in the environment, and the effects of radiation on the human body.

It is our responsibility to provide the results of our research and development activities to society in ways that are transparent and have high quality and impact. We have been disseminating our innovative technologies for resolving challenges in various fields, such as industry, environment, and medicine. The NSEC is a key research center for supporting the nuclear energy infrastructure through our nuclear science and engineering research. We strive to become a leading center for research collaboration, using our fundamental research and development capabilities to contribute to advances in science and technology.

We seek your understanding, support, and encouragement in our research and development activities.

September 2025

FY2024 NSEC R&D Highlights

The following 6 highlights are selected among various outcomes of the R&D activities accomplished by the NSEC in FY2024.

- "Reactivity Worths of TRU Oxide Samples Measured in FCA-IX Assemblies with Systematically Varied Neutron Energy Spectra"
- → "Origin of the Unique Mechanical Properties of Refractory
 High-Entropy Alloys Mechanical-Properties Design Based on
 Electronic-Structure Calculations "
- "Development of Adult Japanese Polygon Mesh-type Human Models for Accurate Dose Assessment"
- "Sensitive Detection of Nonfluorescent Solutes in Small Amounts of Dilute Aqueous Solutions through Photothermally Induced Reflectivity Modulation"
- "Development of a Dissolution Method for Analyzing the Elemental Composition of Fuel Debris Using the Sodium-Peroxide Fusion Technique"

Development of a Deep-Learning-Based Bubble Detector Using the Swin Transformer

UESAWA Shinichiro

Research Group for Reactor Physics and Thermal-Hydraulics Technology

This study proposes a novel bubble-detection method for gas-liquid two-phase flows using the latest deep-learning technology, the Shifted Window Transformer (Swin Transformer)¹⁾. The goal is to achieve high-precision detection and segmentation of bubbles. Parameters such as bubble size, distribution, and void fraction (the volume ratio of bubbles in the fluid) are essential for validating computational fluid dynamics simulations, especially in thermal-hydraulic applications, including nuclear engineering²⁾.

Traditionally, bubble detection has relied on rule-based image-processing techniques that use brightness differences. Representative methods include the Hough transform for detecting circular objects, the breakpoint method for extracting contour features, and the watershed algorithm, which uses brightness gradients to separate regions. However, these methods struggle when bubbles are deformed or overlapping, resulting in reduced accuracy.

To improve the detection of deformed and overlapping bubbles, this study adopted a deep-learning-based image-recognition model, the Swin Transformer. The Swin Transformer splits an image into small regions (windows) and uses a technique called self-attention to identify important patterns within each region. This enables efficient and accurate feature detection. By shifting the windows during processing, the model captures interregional dependencies, achieving high recognition accuracy while reducing computational cost.

The Swin Transformer was used to build a bubble detector³⁾. For training, several dozen synthetic bubble images generated by generative AI, together with experimental bubble images, were used. These synthetic images eliminated labeling errors and enabled stable training, while the experimental images ensured that real-world observation conditions were reflected.

Figure 1 compares the proposed method with traditional rule-based detection techniques (background removal, brightness-based contour extraction, and the watershed algorithm). The Swin Transformer-based detector accurately separated bubbles even in shadowed regions or in cases of overlap. Validation against conventional rule-based image-recognition methods demonstrated superior performance in detecting bubbles obscured along the line of sight.

Fig. 1 Detection of overlapping bubbles along the line of sight (Left: captured image, center: detection results (green lines) using rule-based image recognition, right: detection results (white lines) using the proposed method)

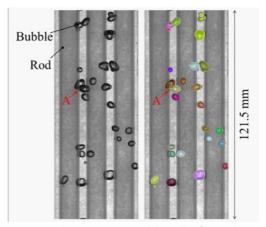


Fig. 2 Visualization in a rod-bundle flow channel (left) and bubble-detection results (right)

The detector was applied to a more complex flow geometry—a 3×3 rod bundle (Fig. 2). Overlapping bubbles in narrow subchannels were successfully detected (A in Fig. 2), and bubble-size distribution was also estimated. These results indicate that the detector is suitable for analyzing bubbly flow in rod bundles.

In conclusion, the bubble-detection method using the Swin Transformer maintains high accuracy even with limited training data and adapts well to complex fluid structures and experimental conditions. This approach is expected to provide a reliable image-analysis tool for future thermal-hydraulic studies and computational fluid dynamics model validation.

- 1) Z. Liu, et al., *Proc. 2021 IEEE/CVF Int. Conf. Comput. Vision*, 9992–10002 (2021).
- 2) H. Yoshida, et al., Proc. NURETH-21, (2025).
- 3) S. Uesawa, H. Yoshida, *J. Nucl. Sci. Technol.* 61(11), 1438–1452 (2024)

Reactivity Worths of TRU Oxide Samples Measured in FCA-IX Assemblies with Systematically Varied Neutron Energy Spectra

FUKUSHIMA Masahiro¹, OKAJIMA Shigeaki², MUKAIYAMA Takehiko³

- 1 Research Group for Nuclear Transmutation System, 2 Retired (JAEA)
- 3 Retired (Japan Atomic Energy Research Institute)

Geological disposal of high-level radioactive waste requires containment for hundreds of thousands of years. To address this challenge, partitioning and transmutation (P&T) technologies offer a promising solution by transmuting long-lived fission products and transuranic (TRU) nuclides into short-lived or stable ones, thereby reducing the radiotoxicity and heat generation of the waste. Accurate nuclear data for TRU nuclides are essential for designing and evaluating such systems safely and effectively.

To improve nuclear-data accuracy, a series of integral experiments were conducted using the Fast Critical Assembly (FCA)¹⁾. Seven experimental configurations (IX-1 to IX-7) were developed, covering neutron spectra from intermediate to fast regions (Fig. 1). Unlike single integral experiments, which lose neutron-energy information, this systematic approach enabled energy-dependent validation of nuclear data. While previous studies focused on benchmarking criticality²⁾ and TRU fission-rate ratios³⁾, the present work further evaluated the reactivity worth of small TRU samples⁴⁾, completing a comprehensive dataset for validating both fission and capture cross sections (Table 1).

Using this dataset, integral validation of the latest nuclear-data library, JENDL-5, was performed. Detailed modeling of the experimental conditions was carried out using the continuous-energy Monte Carlo (MC) code MCNP6.2 to minimize analytical errors. As shown in Fig. 2, the fission-rate ratios and reactivity worth of ²³⁷Np were consistently reproduced across all configurations, confirming the reliability of its nuclear data regardless of neutron spectrum. In contrast, spectrum-dependent discrepancies were observed for americium isotopes⁴⁾, indicating the need for further investigation.

This newly established database systematically covers TRU nuclides that lack sufficient experimental data internationally, providing both fission-rate ratios and sample reactivity worth across various neutron spectra. This database is expected to significantly improve the accuracy of nuclear data and support the development of advanced P&T technologies for sustainable nuclear-waste management.

Table 1 Database of TRU integral experiments

Measured	Fission	Sample
item	Rate ratio	reactivity worth
(reaction)	(fission)	(capture, fission)
²³⁷ Np	Yes	Yes
²³⁸ Pu	Yes	Yes
²⁴⁰ Pu	_	Yes
²⁴² Pu	Yes	_
²⁴¹ Am	Yes	Yes
²⁴³ Am	Yes	Yes
²⁴⁴ Cm	Yes	_

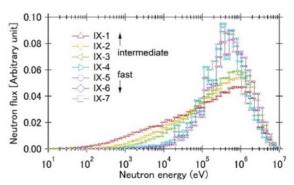


Fig. 1 Systematically varied neutron energy spectra of FCA-IX assemblies

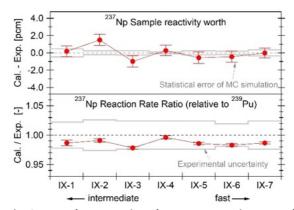


Fig. 2 Example comparison between experiment and calculation (²³⁷Np)

- 1) T. Mukaiyama, et al., Rad. Eff. 93, 147 (1986).
- 2) M. Fukushima, et al., J. Nucl. Sci. Technol. 53, 406 (2016).
- 3) M. Fukushima, et al., J. Nucl. Sci. Technol. 54, 795 (2017).
- 4) M. Fukushima, et al., J. Nucl. Sci. Technol. 61, 478 (2024).

Origin of the Unique Mechanical Properties of Refractory High-Entropy Alloys - Mechanical-Properties Design Based on Electronic-Structure Calculations -

TSURU Tomohito

Research Group for Radiation Materials Engineering

Refractory high-entropy alloys (RHEAs) are of interest for ultrahigh-temperature applications. To overcome their drawbacks — low-temperature brittleness and poor creep strength at high temperatures — an improved fundamental understanding is needed. TiZrHfNbTa (RHEA-Ti) and VNbMoTaW (RHEA-V) alloys, which are expected to be used as new refractory alloys in place of Nibased superalloys, have been widely studied. Using theory, and modeling, experiments, investigated prototypical body-centered cubic (BCC) RHEAs. Our experiments found that these two alloys have different strength and ductility properties, but the underlying mechanism remains unclear. The present study aims to clarify the factors responsible for these differences in mechanical properties using electronic-structure calculations.

In metals, lattice distortion is known to correlate closely with strength. Therefore, we evaluated the lattice distortion using an effective parameter, the mean-square atomic displacement (MSAD), which is directly calculated from atomic displacements, as shown in Fig. 1. A clear difference was found in the normalized MSAD values of the two RHEAs. The MSAD of RHEA-V is close to that of FCC HEAs, whereas that of RHEA-Ti is quite large, exceeding 6% of the Burgers vector. This substantial lattice distortion (large MSAD) contributes not only to volumetric strain but also to shear-strain components.

The dislocation structure, which governs ductility, was also analyzed. Typical examples of dislocation core structures in the two RHEAs are shown in Fig. 2, where the dislocation core was identified using differential displacement vectors. The dislocation in RHEA-V has a compact core, as commonly seen in pure BCC metals. By contrast, the dislocation core of RHEA-Ti is heterogeneously spread. This extended core arises from its tendency toward phase instability, which originates in the electronic structure of constituent elements. The core energy is distributed over a wide energy range. More importantly, however, there is a significant difference between the average core energies of the two RHEAs. The dislocation core energy of RHEA-Ti is much lower than that of RHEA-V. This finding indicates that dislocations are easily introduced into the matrix, contributing to the excellent ductility in RHEA-Ti at low temperatures.

Since plastic deformability (ductility) depends partly on the ease of dislocation nucleation and partly on the ease of dislocation motion, our results provide a plausible explanation for why RHEA-Ti exhibits superior ductility. Electronic-structure calculations further showed that these properties arise from group IV elements such as Ti, Zr, and Hf, which are expected to play a key role in element-strategy alloy design.

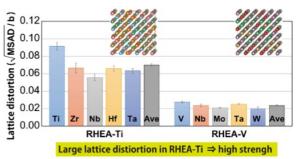


Fig. 1 Lattice distortion of RHEA-Ti and RHEA-V. The mean-square atomic displacement of RHEA-Ti is quite large, exceeding 6% of the Burgers vector, which results in a higher modulus-normalized yield stress for RHEA-Ti.

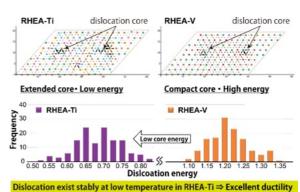


Fig. 2 Dislocation core structure and dislocation energies of RHEA-Ti and RHEA-V. The dislocation core energy of RHEA-Ti is much lower than that of RHEA-V, indicating that dislocations can be introduced more easily in RHEA-Ti.

Reference

1) T. Tsuru, S. Han, S. Matsuura, Z. Chen, I. Lobzenko, S. I. Rao, C. Woodward, E. P. George, H. Inui, *Nature Commun*. 15, 1706 (2024).

Development of Adult Japanese Polygon Mesh-type Human Models for Accurate Dose Assessment

SATO Kaoru

Research Group for Radiation Transport Analysis

Human physical characteristics such as body size and posture generally influence exposure doses. To accurately evaluate exposure doses, it is necessary to assess the detailed behavior of radiation in the body by using a human model that reflects physical characteristics as closely as possible. Thus, a calculation method by combining a Monte Carlo simulation code, including PHITS, with a human model is very useful for evaluating exposure doses.

The International Commission on Radiological Protection (ICRP) has updated knowledge about the effects of radiation on the stem cell regions of the skin and lens, which are highly radiosensitive, and has reduced the equivalent dose limit for the lens. This means that it is important to accurately evaluate the exposure dose to the stem cell regions. However, it was difficult to accurately construct the stem cell region into the body of the earlier human models, because of its less minute and complex structures.

We have newly developed polygon mesh-type human models for male (JPM: the Japanese Polygon mesh-type Male model) and female (JPF: the Japanese Polygon mesh-type Female model) (Fig. 1(a))^{1,2)}. JPM and JPF have the average body sizes and organ masses of Japanese adults. By employing a polygon technique that can flexibly represent object shapes, we constructed the stem cell regions in JPM and JPF. For example, the microsized and complicated structures (cornea, vitreous, aqueous and lens (Sensitive and others)) of the eye tissue were accurately reproduced (Fig. 1(b)).

Figure 2 shows the energy dependence of the organ doses absorbed in the eye tissues of JPF irradiated by electrons in the antero-posterior (AP) geometry. In the irradiation energy range below 0.5 MeV, electrons have extremely short ranges and do not reach the lens, giving almost no dose. By contrast, at higher irradiation energies of 0.6 to 1.5 MeV, more electrons reach the lens (Sensitive), resulting in a significant increase in dose. In addition, at 4 MeV or higher, electrons have ranges that exceed the size of the eyeball, so the eyeball dose becomes consistent with that of the lens (Sensitive). These results demonstrate that JPM and JPF can accurately evaluate the doses to eye tissues, reflecting their fine and complex structures and the physical characteristics of adult Japanese.

Development of a deformation technique for changing the postures and body sizes of JPM and JPF is currently underway. In the future, combining the deformation technique with JPM and JPF will enable evaluation of exposure doses that take into account individual posture and body size. This is expected to improve dose control for medical personnel and patients during medical treatment and for workers in radiation accidents, resulting in optimized radiation protection.

The electronic data of the JPM and JPF are available free of charge on the GitHub repository site³⁾ from October 24, 2024, and can be obtained from the site without any procedures.

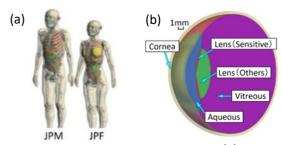


Fig. 1 Polygon mesh-type human models (a) Anterior view of the whole body (b) 3D cross-sectional view of the eye tissue model

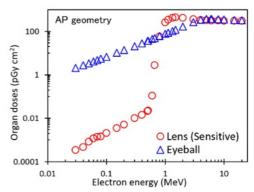


Fig. 2 Organ dose of eye tissues for electron incidents in the AP geometry on JPF

- 1) K. Sato, et al., PLoS One 19(10), e0309753 (2024).
- 2) https://www.jaea.go.jp/02/press2024/p24102502/.
- 3) https://github.com/JapanesePolygonPhantom/JPM-JPF-Phantom .

Sensitive Detection of Nonfluorescent Solutes in Small Amounts of Dilute Aqueous Solutions through Photothermally Induced Reflectivity Modulation

URASHIMA Shu-hei, KUSAKA Ryoji

Research Group for Nuclear Chemistry

Sensitive detection of optical absorption with minimal sample volumes is essential for the chemical characterization of hazardous materials, such as radioactive waste. Photothermal spectroscopy, including techniques such as thermal lens spectroscopy, has been widely employed for this purpose. However, conventional detection methods often require precise optical alignment to achieve reproducible and highly sensitive measurements. In this study, we demonstrate a sensitive and reproducible optical absorption detection method with a simplified experimental setup, based on photothermal reflectivity modulation¹⁾.

In this approach, the sample solution is deposited onto a transparent substrate, such as silica, and two laser beams—a pump beam resonant with the sample and a non-resonant probe beam-are focused onto the samplesubstrate interface (Fig. 1(a)). Photoabsorption of the pump beam induces localized heating at the focal spot, leading to a temperature rise. Since the temperature dependence of the refractive index differs between the sample and the substrate, the reflectivity at the interface is modulated by the pump-induced heat. This modulation is detected by monitoring the intensity of the probe beam reflected from the interface. As the heat source originates from the sample's optical absorption, the magnitude of the reflectivity modulation quantitatively correlates with the absorption strength, enabling determination of the sample concentration. As illustrated in Fig. 1(b), this method requires only coaxial alignment and focusing of the pump and probe beams onto the same location at the interface, in contrast to thermal lens spectroscopy, which requires a slight spatial offset between the two focal spots to achieve optimal sensitivity.

Figure 2 presents the relationship between sample concentration and the magnitude of reflectivity modulation, demonstrated using an aqueous solution of Ponceau 4R. A clear linear correlation was observed across a broad concentration range from 0 to 2000 nmol/L (nM), with a distinct signal even between the blank and the 100 nM sample. The limit of detection (LOD), calculated quantitatively based on noise levels, was determined to be 75 nM. Considering that

photothermal spectroscopy probes only the molecules within the tightly focused pump beam (sub-micrometer), this concentration corresponds to approximately 75 molecules within the probed volume. Furthermore, based on the molar absorptivity of Ponceau 4R (18800 M⁻¹·cm⁻¹), this concentration yields an absorption coefficient of 0.0014 cm⁻¹. This value is comparable to the best LOD reported in the literature (0.0011 cm⁻¹), which more complex requirs photothermal spectroscopy setup²⁾. These results demonstrate that our method achieves highly sensitive absorption detection with a simplified optical configuration, meeting the requirements outlined for hazardous sample analysis.

This work was supported by the MEXT Leading Initiative for Excellent Young Researchers, Grant Number JPMXS0320230068.

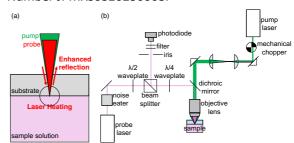


Fig. 1 (a) Schematic illustration of photothermal reflectivity modulation spectroscopy (b) Optical setup used in this study

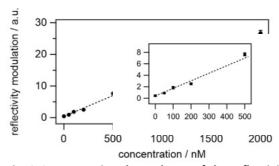


Fig. 2 Concentration dependence of the reflectivitymodulation signal

- 1) S. Urashima, R. Kusaka, Analyst 150, 819 (2025).
- 2) H. Shimizu, et al., Analyst 145, 2580 (2020).

Development of a Dissolution Method for Analyzing the Elemental Composition of Fuel Debris Using the Sodium-Peroxide Fusion Technique

NAKAMURA Satoshi¹, ISHII Sho², KATO Hitoshi³, BAN Yasutoshi¹, HIRUTA Kenta⁴, YOSHIDA Takuya⁴, UEHARA Hiroyuki⁴, OBATA Hiroki⁴, KIMURA Yasuhiko⁴, TAKANO Masahide⁵

- 1 Development Group for Nuclear Engineering Technology
- 2 Rikohkagaku Co. Ltd
- 3 Gic Corp
- 4 Department of Criticality and Hot Examination Technology
- 5 Nuclear Science and Engineering Center

As a pretreatment for the chemical analysis, it is crucial to dissolve the fuel debris to estimate the elemental and nuclide compositions with high accuracy. However, because fuel debris comprises chemically stable ceramic components, such as oxides, borides, and various alloys, it is barely soluble in nitric acid. In this study, we focus on alkaline fusion using sodium peroxide (Na_2O_2) as the fusing flux. This method has been applied in chemical analysis in the nuclear field as well as for the analysis of materials similar to fuel debris.

In the present work¹⁾, after studying dissolution methods with various types of simulated debris, a demonstration test with Three Mile Island Unit 2 (TMI-2) debris was conducted. First, we focused on zirconia, the least soluble component of fuel debris in nitric acid, and a solid solution of zirconium oxide and rare-earth oxides ((Zr,RE)O₂) was fused with Na₂O₂ at different temperatures in Ni crucibles to determine the optimum temperature. Then, fusion with Na₂O₂ was performed in crucibles of several different materials under the optimum temperature. Subsequently, а series experiments was conducted using molten core concrete interaction (MCCI) products that were more representative of actual fuel debris. The objective was to examine the influence of leached elements on analysis and to assess the applicability of the method to MCCI samples using various

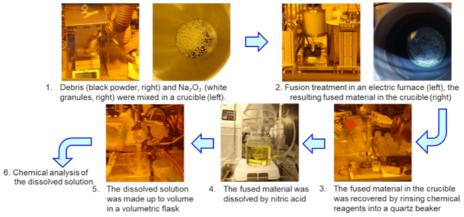
inexpensive crucibles. The results suggested that Ni crucibles at 923 K provide the optimum testing condition.

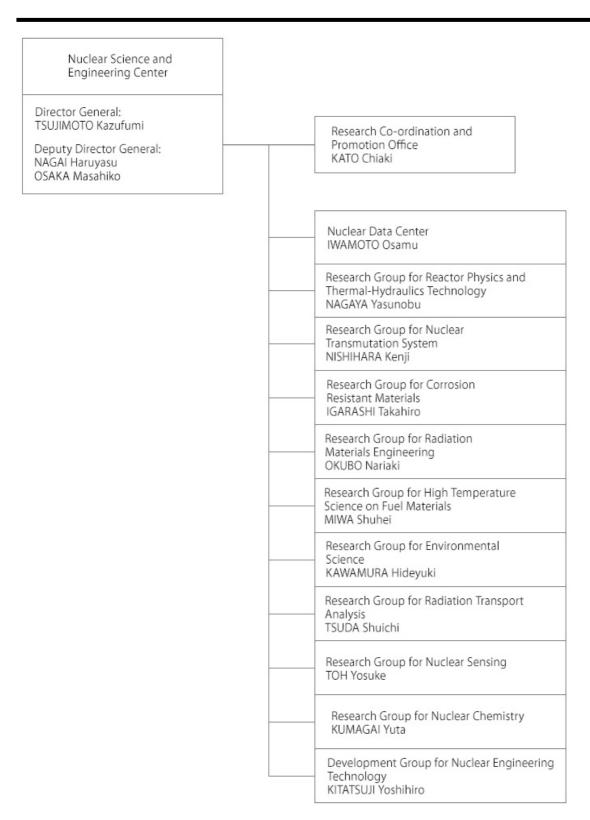
The optimum testing condition was then applied in demonstration tests with TMI-2 debris in a shielded concrete cell at the NUclear fuel Cycle safety Engineering research Facility (NUCEF) of the Nuclear Science Research Institute (Fig. 1), thereby achieving complete dissolution of the debris. The elemental composition of TMI-2 debris obtained using the proposed dissolution method showed good reproducibility and only insignificant deviations in the mass balance of the sample. Therefore, this newly developed, reproducible dissolution method can be effectively utilized in practical applications for dissolving fuel debris and estimating its elemental composition.

We recently received fuel debris obtained from the first trial retrieval inside the pedestal of Unit 2 at Fukushima Daiichi Nuclear Power Station. The developed Na_2O_2 fusion technique was applied in the shielded concrete cell, and the experiment was successfully carried out. Complete dissolution was confirmed by visual observation, indicating that the technique is highly promising for subsequent fuel debris analyses.

Reference

1) S. Nakamura, et al., J. Nucl. Sci. Technol. 62(1), 56 (2025).




Fig. 1 Scheme of the demonstration tests with TMI-2 debris in a shielded concrete cell

FY2024 NSEC Group Activities

The NSEC of JAEA consists of 11 Groups.

- ♦ Nuclear Data Center
- Research Group for Reactor Physics and Thermal-Hydraulics Technology
- ♦ Research Group for Nuclear Transmutation System
- ♦ Research Group for Corrosion Resistant Materials
- Research Group for Radiation Material Engineering
- ♦ Research Group for High Temperature Science on Fuel Materials
- ♦ Research Group for Environmental Science
- ♦ Research Group for Radiation Transport Analysis
- ♦ Research Group for Nuclear Sensing
- ♦ Research Group for Nuclear Chemistry
- ♦ Development Group for Nuclear Engineering Technology

Organization of NSEC

URL: https://nsec.jaea.go.jp/organization/en index.html

Nuclear Data Center

To provide reliable nuclear data, we are engaged in research on theories, measurements and evaluations related to nuclear reactions and structure. The evaluated nuclear data have been compiled in the Japanese Evaluated Nuclear Data Library (JENDL), which is available on our website (http://wwwndc.jaea.go.jp).

Thermal-Neutron Capture Cross-Section Measurements for Nuclear Decommissioning

Thermal-neutron cross sections are important not only for neutronic calculations in operating nuclear reactors but also for radioactivity evaluations during their decommissioning. While a relatively small number of nuclides affect the neutronic calculations, it is necessary to estimate the contribution of radioactivity of many nuclides from the viewpoint of clearance of radioactive materials. The structural materials of reactors contain various impurities that would produce radioactive nuclides by neutron-capture reactions. We are measuring the thermal-neutron capture cross sections for various nuclides related to clearance. In this fiscal year, three scientific papers were published on this topic^{1,2,3)}. The results for Sc, Cu, Zn, Ag, In, Fe, Er and Hf were obtained. These measurements reveal that many of the results, such as those for the isotopes of Sc, Ag, In, Fe and Er are generally consistent with the latest nuclear data library, JENDL-5. However, they also indicate that the evaluated values of ⁶³Cu and ¹⁸⁰Hf JENDL-5 for significantly overestimate or underestimate the present results, respectively. These findings will be considered in nuclear data evaluations for updating JENDL-5.

Time-of-flight Measurements of Neutron Cross Sections

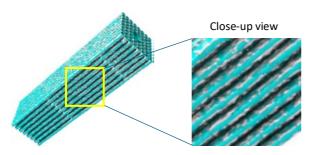
Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI), installed in the Materials and Life Science Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC), is one of the most powerful instruments for nuclear data measurements using the time-of-flight method due to its high neutron flux. With ANNRI, we measured the neutron capture cross sections of ¹²⁹I, which is one of the important long-lived fission products, over the wide neutron energy range from 10 meV to 30 KeV for the first time⁴⁾. It was found that the evaluated data of JENDL-5 overestimates compared with the measured cross sections in the energy region between 1 to 20 eV, which lies between thermal and first resonance energies.

The gamma-rays emitted in neutron capture reactions carry information about the details of the reaction. The polarization of the emitted gamma-rays depends on the reaction system and can be used to identify the spin of the resonance. We developed a polarimeter based on magnetic Compton scattering and tested it using gamma-rays produced with laser Compton scattering, which demonstrated the expected performance⁵⁾. The polarimeter was installed at ANNRI and successfully used to measure the polarization of gamma-rays from neutron-capture reactions on ³²S.

Measurement and Evaluation of Thermal-Neutron Scattering Law

The thermal-neutron scattering law (TSL) is a critical nuclear dataset that influences the calculated neutron flux for thermal nuclear reactors. We measured and evaluated the TSL of graphite that is expected to be used in high-temperature gascooled reactors and molten-salt reactors. The neutron scattering and total cross sections were measured with Cold-Neutron Disk-Chopper Spectrometer (AMATERAS) and ANNRI at J-PARC, respectively⁶⁾. The first-principles calculation of the phonon density of states for ideal crystalline graphite was used for the evaluation of TSL7). It was found that the experimental data support the present evaluation rather than the nuclear data of JENDL-5, which adopted the ENDF-VIII.0 evaluation based on molecular-dynamics calculations for porous graphite.

- 1) S. Nakamura, et al., *J. Nucl. Sci. Technol.* 61(11), 1415 (2024).
- 2) S. Nakamura, et al., J. Nucl. Sci. Technol. 62(3), 300 (2025).
- 3) S. Nakamura, et al., J. Nucl. Sci. Technol. 62(7), 617 (2025).
- 4) G. Rovira, et al., Eur. Phys. J. 60, 120 (2024).
- 5) S. Endo, et al., Eur. Phys. J. 60, 166 (2024).
- 6) A. Kimura, et al., EPJ Web Conf. 294, 01002 (2024).
- 7) S. Nakayama, et al., EPJ Web Conf. 294, 07001 (2024).


Contact (Group Leader):
IWAMOTO Osamu
iwamoto.osamu@jaea.go.jp

Research Group for Reactor Physics and Thermal-Hydraulics Technology

Our group is working on reactor physics and thermal hydraulics. The group's mission is to develop not only individual technologies but also multi-physics simulation technologies. We are currently focusing on the development of an advanced neutronics/thermal-hydraulics coupling simulation system for the enhanced safety of lightwater reactors (LWRs) and the improvement of LWR design.

JAMPAN

Nuclear reactor core design codes account for multiple physical phenomena, such as nuclear reactions and heat transfer within a reactor. To validate core design codes, it is necessary to consider multiple physical phenomena that occur simultaneously in actual reactors. However, it is difficult to reproduce such combinations experimentally. Therefore, we developed a multiphysics simulation platform named JAMPAN¹⁾ that can simulate multiple physical phenomena in combination. Using JAMPAN, we conducted detailed multi-physics simulations targeting fuel in boiling-water reactors (BWRs) (Fig. 1). This largescale simulation is expected to provide data equivalent to experiments that reproduce multiple physical phenomena. By utilizing the analysis results from JAMPAN, we aim to contribute to improvements in core design, such as enhanced reliability and performance.

Cyan indicates fuel rods, and the light gray indicates steam bubbles.

Fig. 1 Simulation results of an 8 \times 8 BWR fuel assembly

Visualization of Atomized Fuel Debris

In a severe nuclear reactor accident, when molten fuel falls into a shallow water pool, some of the

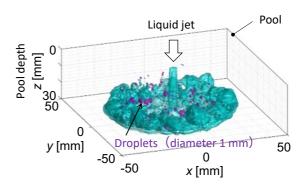


Fig. 2 Three-dimensional visualization of a liquid-jet phenomenon in which the jet splits into nearly 1,000 droplets

molten fuel may split into many tiny droplets. We developed a method to visualize this phenomenon, involving two different liquids (molten fuel and water) in three dimensions through simulated experiments.²⁾ We applied a visualization method that can accurately measure the size and speed of each of the numerous droplets (Fig. 2).3 As a result, we clarified that the velocity difference between the two liquids, as well as the centrifugal force and gravity arising from their motion, influence droplet formation. The findings of this study deepen our understanding of the process by which molten fuel fragments into small pieces, cools, solidifies, and forms fuel debris during a severe accident. These findings are expected to contribute to the decommissioning of the Fukushima Daiichi Nuclear Power Station and to improving nuclear reactor safety.

- 1) T. Kamiya, et al., *Mech. Eng. J.*, 12(4), 24-00461 (2025), https://doi.org/10.1299/mej.24-00461.
- 2) N. Horiguchi, et al., *Phys. Fluids*, 37, 033333 (2025), https://doi.org/10.1063/5.0253743 .
- 3) N. Horiguchi, et al., *Proc. 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics* (NURETH-19), 1-14 (2022).

Contact (Group Leader):
NAGAYA Yasunobu
nagaya.yasunobu@jaea.go.jp

Research Group for Nuclear Transmutation System

The Research Group for Nuclear Transmutation System is developing an Accelerator-Driven System (ADS) dedicated to the transmutation of minor actinides (MAs) into short-lived or stable nuclides. Because the ADS utilizes high-energy protons and unconventional materials such as lead-bismuth eutectic (LBE), fundamental experimental data is insufficient. We are conducting research to expand the existing experimental data using the latest statistical methods and to apply it to the design of the ADS.

Comprehensive Estimation of Nuclide-Production Cross Sections

In the design of an ADS, it is essential to accurately estimate the production yields of nuclides generated by high-energy protons targeting materials inside ADS. To this end, we have developed a machine-learning model to evaluate the nuclide production over a wide range of proton energy and target element. Figure 1 shows the production probability (cross section) of beryllium-7 (7Be) from proton-induced reactions at energies from 0.05 to 3 GeV, plotted as a function of the target mass number. By learning from the existing experimental data shown as dots in Fig. 1, the developed model can predict cross sections even

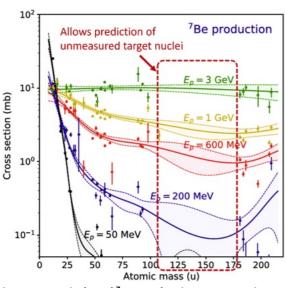


Fig. 1 Proton-induced ⁷Be production cross section as a function of target mass number¹⁾. Although the experimental data (dot) provides cross-sections in a very narrow range of proton energies and target materials, the present model expands this to the entire range (solid line).

for target nuclei in the mass range of 100–170, for which experiments are scarce or difficult. This technique enables a more reliable design of the ADS.

Uncertainty Reduction Using Sample Reactivity Experiments

The ADS employs liquid-metal LBE as the coolant because of its attractive properties, although LBE has rarely been utilized in reactors. In particular, the reaction data between neutrons and LBE is not well known and has a significant impact on the neutronics design of the ADS. One important core parameter is coolant-void reactivity (CVR), which represents the change in criticality when LBE leaks or boils away from the core. The required CVR uncertainty is 5%, but the current uncertainty estimate slightly exceeds this target. To address this, we applied the data-assimilation technique to the CVR using experiments performed at the Kyoto Critical Assembly $(KUCA)^{2}$. University technique transfers information from the relevant core (e.g., KUCA) to the target core (e.g., ADS) via common fundamental parameters (e.g., reaction data of neutrons). Although the KUCA experimental core differs substantially from the actual ADS core in terms of size, nuclear fuel, and coolant material, we succeeded in reducing the CVR uncertainty from 6.3% to 3.6% (Table 1).

Table 1 Prior and posterior uncertainties of coolant-void reactivity (%)²⁾

Target	Prior	Posterior
5.0	6.3	3.6

References

- 1) H. Iwamoto, et al., *Phys. Rev. C* 109(5), 054610 (2024).
- 2) R. Katano, et al., Nucl. Sci. Eng. 198(6), 1215 (2024).

Contact (Group Leader):
NISHIHARA Kenji
nishihara.kenji@jaea.go.jp

Research Group for Corrosion Resistant Materials

Our research group investigates the corrosion phenomena of metallic materials used in nuclear facilities. Corrosion can degrade reactor components, leading to hole and crack formation. Hence, we aim to elucidate the governing corrosion mechanisms to develop reliable methods for corrosion prediction and prevention. Our principal goal is to enhance the reliability and extend the service life of nuclear infrastructure.

Non-Destructive Evaluation of Corrosion Progression in SM490A Steel Using Image Processing

This study investigates a non-destructive approach for evaluating corrosion progression in SM490A steel by utilizing image-processing techniques without the application of machine learning.¹⁾ Corrosion images obtained from cyclic wet-dry tests were analyzed using feature-point detection. The method, which incorporates luminance gradients angular features within the images, demonstrated a strong correlation with actual corrosion depth (Fig. 1). As it does not require training data, this technique offers a rapid and innovative solution for corrosion diagnosis. This method is significant in that it can predict corrosion depth with moderate accuracy without any training. However, for improved precision, it would be preferable to use techniques such as machine learning, even though they may require more time.

Experimental and Modeling Studies on Oxygen Ingression Behavior in Stainless-Steel Crevices in High-Temperature Water

This study investigates the behavior of oxygen ingression and associated water-chemistry changes within crevices of 316L stainless steel under lightwater reactor (LWR) conditions (288 °C, 8 MPa). The limiting distance of O2 ingress (dlim) was identified by Raman spectroscopy as the depth at which the surface oxide composition transitions from $\gamma(\alpha)$ -Fe2O3 to Fe3O4 (Fig. 2(a)). This transition coincides with a sharp increase in electrical conductivity, indicating ion enrichment due to differential oxygen concentration. Experimental variables included crevice gap (g, 5–1000 μ m), dissolved oxygen concentration (0.2 and 8 ppm),

and immersion time (100 and 1000 h). Results showed that d_{lim} increases with gap size, oxygen concentration, and time (Fig. 2(b)). A finite-element model incorporating oxide-film growth was developed to simulate time-dependent oxygen ingress. The model successfully reproduced experimental trends, demonstrating that oxide layer formation suppresses anodic dissolution and slows oxygen consumption, allowing deeper oxygen penetration. These findings advance the mechanistic understanding of crevice waterchemistry evolution and provide a foundation for predicting stress-corrosion cracking (SCC) behavior in reactor environments.

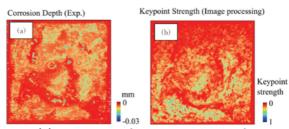


Fig. 1 (a) Heat map of corrosion depth after rust removal (b) Contour map of keypoint strength form a corrosion image obtained by point detection

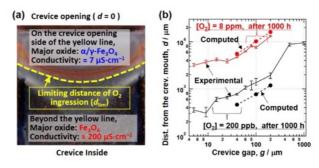


Fig. 2 (a) Crevice surface after the corrosion test (b) d_{lim} on the g (crevice gap)-d (distance from the crevice mouth) plane

References

- 1) T. Igarashi, et al., *Tetsu-to-Hagané* 110, 1244 (2024) (*in Japanese*).
- 2) Y. Soma, et al., Corrosion Science 251, 112897 (2025).

Contact (Group Leader): IGARASHI Takahiro igarashi.takahiro@jaea.go.jp

Research Group for Radiation Material Engineering

In the radiation environment of nuclear systems such as light water reactors and advanced nuclear reactors, mechanical properties change as the microstructure of materials evolves. To predict changes in the properties of nuclear materials, we investigate changes in their microstructure using both experimental and computational approaches. In particular, fundamental and engineering studies aimed at elucidating the mechanisms of radiation-induced property changes, such as radiation-induced embrittlement, are important for identifying superior candidate nuclear materials.

Cr-Rich Precipitate Formation in Fe-Cr-Al ATF Alloys: Effects of Composition and Dose Rate via Regression Analysis

To improve nuclear safety, Fe-Cr-Al alloys have been developed as promising accident-tolerant fuel (ATF) cladding candidates. However, irradiation-induced Cr-rich precipitates (CrRP), which cause embrittlement, remain a critical issue. This study¹⁾ examines CrRP formation in 14 Fe-Cr-Al model alloys with systematically varied Cr and Al contents, irradiated at 350 °C using 10.5 MeV self-ions to 0.24 dpa. Three dose rates (8×10⁻⁶ to 8×10⁻⁴ dpa/s) simulated neutron irradiation conditions.

Three-dimensional atom probe (3DAP) quantified CrRP number density and size, which were used to evaluate Vickers hardness. A multiple regression model examined the effects of composition, dose rate, and dose. Figure 1 shows the predicted increase in Vickers hardness, derived from CrRP metrics, as contour maps in Cr–Al space, revealing increases with higher Cr, lower Al, and slower dose rates. The dataset and model provide a robust basis for numerical simulations and alloy design to improve irradiation tolerance.

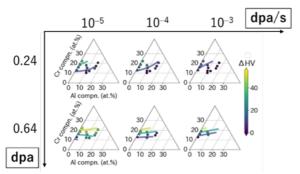


Fig. 1 Increase in Vickers hardness evaluated from CrRP metrics obtained by 3DAP (dots) and model predictions (contours) across Cr–Al compositions.

Machine Learning and First-Principles Study of Al Effects on CrRP Formation in Fe-Cr-Al Alloys

To deepen the fundamental understanding of CrRP formation in Fe-Cr-Al alloys under irradiation, this study²⁾ examined the effect of Al additions through long-term thermal aging experiments analyzed with a machine learning model. The total dataset included 590 samples—190 from this study and 400 from 28 previous reports. Complementary first-principles calculations were performed to clarify atomistic formation mechanisms via static energy analysis.

As shown in Fig. 2(a), the machine learning model indicates that CrRP formation is enhanced in alloys with less than 10 at.% Al but suppressed above this level. First-principles results (Fig. 2(b)) explain this non-linear trend: Cr-Al-vacancy complexes are more stable than Cr-Cr pairs and promote nucleation, whereas Al-Al pairs are unstable and destabilize CrRP at high Al concentrations.

These insights contribute to the rational design of Fe-Cr-Al alloys with improved irradiation resistance, especially for ATF cladding applications.

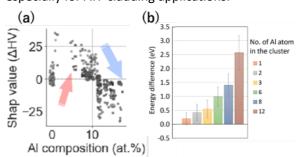


Fig. 2 (a) Increase in hardness Δ HV after thermal aging as a function of Al content, based on a machine learning model. Shaded areas show the 95% confidence intervals. (b) Stability of CrRPs with Al addition calculated using first-principles methods. Lower energy indicates more stable structures.

References

- 1) Y. Abe, et al., J. Nucl. Mater. 600, 155271 (2024).
- 2) Y. Abe, et al., J. Nucl. Mater. 606, 155606 (2025).

Contact (Group Leader):
OKUBO Nariaki
okubo.nariaki@jaea.go.jp

Research Group for High Temperature Science on Fuel Materials

We conduct research and development on advanced nuclear fuels, fuel debris characteristics, and fission product (FP) behavior during severe accidents (SAs) to support the sustainable development of nuclear energy. Our research involves both cold- and hot-material experiments, utilizing various high-temperature heating devices, analytical instruments, and property analysis tools. We also integrate computational modeling to complement our experimental findings, applying first-principles calculations, thermodynamic principles, and fuel performance codes, along with our databases on fuel properties.

Advanced Fuel Development

Toward the practical implementation of nitride fuels for minor actinide (MA) transmutation, irradiation tests are essential to verify transmutation performance and demonstrate fuel integrity. Accordingly, an irradiation test of MA-containing nitride fuels is being planned using the experimental fast reactor JOYO.

We have therefore begun fuel performance analysis using the FEMAXI code¹⁾, which has been improved to handle nitride fuel analysis, to assess fuel irradiation conditions and specifications. analysis was conducted for irradiation conditions consistent with the fuel compositions irradiation period feasible in the JOYO Type-B capsule fuel assembly. The calculations successfully predicted key fuel behaviors during the feasible irradiation period, including changes in central temperature, pellet-cladding gap, and FP gas release (Fig. 1). Based on these results, we plan to examine the fuel specifications and post-irradiation experimental items necessary to gain insights into MA transmutation rates and key issues specific to nitride fuel, such as pellet-cladding mechanical interaction.

Furthermore, as part of the R&D toward the practical implementation of a nitride fuel cycle, we are advancing technological developments such as fuel pellet fabrication using the external gelation method and the enhancement of dissolution rates for pyroprocessing.

FP Behavior

Radioactive cesium (Cs) at the TEPCO Fukushima Daiichi Nuclear Power Station (1F) is a major source of radiation. Understanding its distribution and water solubility is crucial for rational safety assessments of fuel debris retrieval,

decommissioning, and waste management.

To improve the accuracy of the FP chemistry database ECUME, we investigated the chemical behavior of Cs in the reactor and evaluated its transport under SA conditions. Internal surveys of 1F have revealed that highly radioactive deposits remain on the control rod drive rails within the primary containment vessel. To identify the cause, we studied the chemical reactions between Cs and the thermal insulation material.

By analyzing the reaction products between Cs and calcium silicate—the main component of the insulation—we identified for the first time that water-soluble Cs compounds exist in the form of Cs₂SiO₃. Thermodynamic equilibrium calculations further showed that this compound could significantly contribute to Cs retention in the insulation material²⁾.

These findings indicate that, through reactions with the thermal insulation material, Cs may form relatively water-insoluble cesium silicates such as $Cs_2Si_4O_9$ and $Cs_2Si_2O_5$, in addition to the water-soluble Cs_2SiO_3 , and remain in the deposited material.

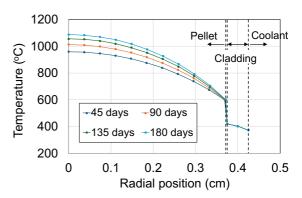


Fig. 1 Example of radial temperature distribution in nitride fuel

References

- 1) H. Shibata, et al., *Trans. AESJ* 23(3), 74-80 (2024) (*in Japanese*).
- 2) M. Rizaal, et al., Chemosphere 363, 142870 (2024).

Contact (Group Leader): MIWA Shuhei miwa.shuhei@jaea.go.jp

Research Group for Environmental Science

Our group studies the dynamics of radioactive materials in atmospheric, terrestrial, and marine environments to improve technologies for assessing their environmental effects. We have developed and validated computer models to predict the dispersion of radioactive materials in the environment. Examples of the computer models developed include atmospheric dispersion prediction systems (WSPEEDI-DB etc.) and an oceanic dispersion prediction system (STEAMER). We also conduct field observations to collect environmental samples in terrestrial and marine environments. Our advanced analytical technologies enable us to elucidate the dynamics of radioactive materials and validate these computer models.

Discharge of ¹²⁹I in Riverbank Sediment after the Fukushima Accident

The Fukushima Daiichi Nuclear Power Station (1F) accident occurred in March 2011. As a result, the 1F accident released anthropogenic radioactive materials into the environment (e.g., 1.45×10^{16} Bq for 137 Cs $^{1)}$, 8.06×10^{9} Bq for 129 I $^{2)}$). 137 Cs has a long half-life (30.1 years) and remains in the environment for extended periods. Therefore, many observational and numerical studies have focused on 137 Cs. In contrast, there has been relatively little research on 129 I. However, 129 I is useful for tracing the behavior of radioactive materials in the environment over long timescales because its half-life is about 15.7 million years. 129 I is also important for assessing the long-term radiation effects on marine ecosystems.

This study investigated the transport process of ¹²⁹I based on surveys conducted from 2013 to 2015 in the Tomioka River watershed (watershed area: 63 km²) in Fukushima Prefecture³⁾. The ¹²⁹I/¹³⁷Cs activity ratios in the surface soil were relatively low in the mountain areas and relatively high in the plains (Fig. 1). The ¹²⁹I/¹³⁷Cs activity ratios on the levee crown remained similar to those in the surrounding areas in 2011 until 2015. In contrast, the ¹²⁹I/¹³⁷Cs activity ratios in the surface riverbank sediment were low, suggesting that radioactive materials from the mountain areas transported to the plains. The vertical distribution of the 129I/137Cs activity ratios in the riverbank sediment also showed that part of 129 and 137Cs remained in the lower layer but was mostly eroded shortly after the 1F accident.

As noted above, the ¹²⁹I/¹³⁷Cs activity ratios in the

riverbank sediment remained constant until 2015 after the 1F accident. Therefore, based on the ¹²⁹I/¹³⁷Cs activity ratios and the previously estimated ¹³⁷Cs discharge amount⁴⁾, the ¹²⁹I discharge amount to the ocean was estimated in this study. The ¹²⁹I discharge from the study area to the ocean was estimated to be 1.8×10^5 Bg. Moreover, for the wider river watersheds (Abukuma River and Fukushima coastal rivers, including the study river), it was estimated to be 1.2 \times 10⁷ Bq. This amount corresponds to 0.3 % of the amount discharged shortly after the 1F accident $(3.4 \times 10^9 \,\mathrm{Bq^{2}})$. These results indicate that the longterm 129 discharge from the river watersheds in Fukushima Prefecture would have little effect on the amount in the seabed sediment along the Fukushima coastal areas.

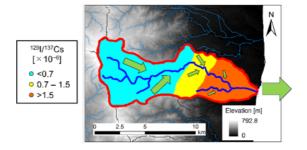


Fig. 1 Spatial distribution of the ¹²⁹I/¹³⁷Cs activity ratios in the surface soil in the Tomioka River watershed, Fukushima Prefecture. The arrows indicate the migration of radioactive materials.

- 1) G. Katata, et al., *Atmos. Chem. Phys.* 15, 1029-1070 (2015), https://doi.org/10.5194/acp-15-1029-2015.
- 2) X. Hou, et al., *Environ. Sci. Technol.* 47, 3091-3098 (2013), https://doi.org/10.1021/es304460k.
- 3) T. Nakanishi, et al., *Environ. Pollut.* 355, 124213 (2024), https://doi.org/10.1016/j.envpol.2024.124213.
- 4) K. Sakuma, et al., *J. Environ. Radioact.* 208-209, 106041 (2019), https://doi.org/10.1016/j.jenvrad.2019.106041.

Contact (Group Leader): KAWAMURA Hideyuki kawamura.hideyuki@jaea.go.jp

Research Group for Radiation Transport Analysis

Computer simulation is an essential tool for research and development in the field of nuclear and radiation sciences. The Particle and Heavy Ion Transport code System (PHITS) is a radiation transport simulation code developed by our group to meet various societal needs. This paper summarizes our progress in FY2024.

Upgrades of the PHITS Code

A new version of PHITS¹⁾ (version 3.35, https://phits.jaea.go.jp) was developed and released to the public. The number of newly registered PHITS users in FY2024 was 1,515, including 692 Japanese users. The following are the major upgrades in the latest version.

Activation cross sections

The cross sections used to calculate activation by neutron-, proton-, deuteron-, and photon-induced nuclear reactions have been updated to those based on JENDL-5. With this update, the accuracy of induced activity calculations following long-term accelerator irradiation has been improved.

Variance reduction techniques

The variance reduction techniques implemented in PHITS have been enhanced to improve the efficiency of radiation shielding calculations. For example, a unique function was introduced into the weight-window generator of PHITS to guide particles toward regions of user interest²⁾. The performance of this new function was evaluated through benchmark simulations for both idealized and practical shielding problems. The results indicated that the new algorithm could reduce computational time by up to an order of magnitude.

Indirect DNA damage

We investigated indirect DNA-damage effects by developing a dynamic Monte Carlo code for the chemical process. The reaction probabilities and the spatial distribution of lesions were theoretically derived as a function of the spur radius and the distance between DNA and the initial ionisation position. We suggested that a hydroxyl radical and a hydrated electron from a single spur can concomitantly react within 10 base pairs of DNA to induce a multiple DNA-damage site comprising a DNA single-strand break and reductive nucleobase damage; however, the reaction probability is 0.4% or less. Once this combination occurs, it may result

in a DNA double-strand break (DSB). DSBs are difficult to repair, which may lead to cell death or misrepair, and can cause point mutations in the genome³⁾.

Graphical Interface of PHITS-Chem

The PHITS-Chem code³⁾, which allows the simulation of the dynamics of chemical products generated by water radiolysis, has been developed and included in the PHITS package. The results can be graphically illustrated using the PHIG-3D software (Fig. 1), contributing to an intuitive understanding of the temporal reactions of radicals and the subsequently induced DNA damage.

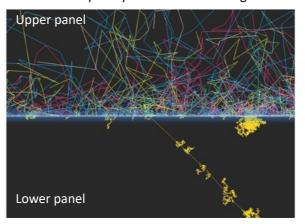


Fig. 1 10 MeV proton track and dynamics of radicals (OH radical, hydrated electron, hydrogen, hydrogen peroxide, etc.) at the DNA scale in the upper panel. The proton passes through the center from left to right. The yellow lines in the lower panel represent electron tracks.

- 1) T. Sato, et al., Nucl. Instr. Meth. B 557, 165535 (2024).
- 2) Y. Matsuya, et al., Phys. Med. Biol. 69, 035005 (2024).
- 3) T. Kai, et al., Commun. Chem. 8, 60 (2025).

Contact (Group Leader): TSUDA Shuichi tsuda.shuichi@jaea.go.jp

Research Group for Nuclear Sensing

In FY2024, we achieved significant progress in both accurate temperature measurement technologies and the observation of high-energy natural radiation phenomena. We proposed a novel remote temperature-measurement method using radiation, which demonstrated higher sensitivity and accuracy than conventional techniques and showed potential for application to nuclear-fuel monitoring. In addition, long-term observations of thundercloud-related radiation events over the Tibetan Plateau revealed a periodic variation that may be linked to solar activity, providing valuable insights into high-energy atmospheric phenomena. These results represent steady advancement in both the practical application of radiation measurement and fundamental understanding. The following summarizes the main research achievements.

Development of Neutron Self-Indication Thermometry¹⁾

Accurate temperature determination with small

uncertainties is essential in neutron thermometry

for both fundamental research and industrial applications. Conventional neutron resonance transmission thermometry (NRTT) estimates the sample temperature from small changes in neutron transmission at resonance energies induced by the Doppler-broadening effect. However, its sensitivity is inherently limited because the temperaturesensitive component is small compared with the primary neutron signal. To overcome this limitation, we developed a new method, neutron selfindication thermometry (NSIT), which combines the Doppler-broadening effect with a selfindication technique. In NSIT, both the sample and an indicator containing the same nuclide are irradiated, and prompt gamma rays are measured, effectively using the same resonance twice to enhance the temperature-sensitive component. To verify the method, experiments were performed with tantalum samples, selected for their resonance energies, which are close to those of uranium and plutonium, over a temperature range of 23.0 °C to 492.6 °C. The results showed that NSIT achieved approximately 1.6-2.4 times higher temperature sensitivity and 3-9 % lower uncertainty compared with NRTT. These improvements indicate that NSIT can provide more accurate and reliable remote temperature measurements. This method has strong potential for widespread applications, including nuclear-fuel

monitoring and other situations where direct temperature measurement is difficult.

Long-duration Bursts of High-Energy Radiation Observed on the Tibetan Plateau²⁾

High-energy radiation has been observed from thunderclouds at both ground level and highmountain regions. While its origin is believed to lie in the electron acceleration in thunderclouds, the underlying mechanisms remain elusive. To help address this mystery, we analyzed long-term data from a cosmic-ray detector installed on the highaltitude region of the Tibetan Plateau. From 1998 to 2017, a neutron monitor located at 4.3 km above sea level in Yangbajing on the Tibetan Plateau, detected 127 long-duration bursts of high-energy radiation associated with thunderclouds. These bursts typically lasted between 10 and nearly 60 minutes, significantly longer than those observed in winter at the coastal area of the Sea of Japan. This indicates that continuous electron acceleration to >10 MeV can occur within thunderclouds. The bursts occurred more frequently at night (especially between 18:00 and 06:00) and showed clear diurnal and seasonal variations, consistent with regional lightning and precipitation activity. Notably, the annual burst frequency exhibited a distinct 16year periodicity with an approximately 3-year phase lag relative to the 11-year solar cycle, suggesting a possible link between solar activity and the production of long-duration bursts. These findings demonstrate the importance of long-term observations for understanding the temporal behavior and production mechanisms of highenergy radiation emitted from thunderclouds. They also highlight the value of integrating such data with meteorological information to clarify the links between cosmic rays, solar activity, and particle acceleration in thunderclouds.

References

M. Segawa, et al., J. Nucl. Sci. Technol. 62, 268–277 (2025).
 H. Tsuchiya, et al., Prog. Earth Planet. Sci. 11(26), 1-14 (2024).

Contact (Group Leader): TOH Yosuke toh.yosuke@jaea.go.jp

Research Group for Nuclear Chemistry

Understanding the chemical behavior and speciation of radionuclides in solution is essential for addressing key challenges in the nuclear field, particularly in the back-end processes related to the safe treatment and disposal of nuclear waste. To advance these chemical investigations, computer simulations and analytical techniques play critical roles. In this report, we briefly introduce a new computational approach for the early-stage radiolysis in liquids and a new automated data-processing method for mapping solid samples by laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS).

Understanding Radiation Chemistry through Dielectric Response

Radiation in liquids creates highly reactive charged species, leading to complex chemical reactions. This study explores how the dielectric response—the time-dependent change in a liquid's ability to screen electric charges—affects these reactions¹). Using advanced Monte Carlo simulations, we modeled how electrons and ions interact and recombine in various solvents (Fig. 1).

We found that if recombination occurs faster than the dielectric response, traditional models using static permittivity may fail to predict outcomes accurately. This insight is especially important for high-energy radiation or laser-induced processes, where reactions occur on ultrafast timescales. By incorporating dynamic dielectric behavior, our study provides a more precise understanding of radiation-induced chemistry, paving the way for improved predictions in fields such as nuclear science, medical radiation, and materials research.

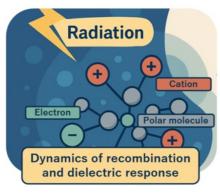


Fig. 1 Illustration of electron-cation recombination influenced by the dielectric response

Automated and Rapid Data Processing for Elemental Mapping by LA-ICP-MS

LA-ICP-MS is widely used for elemental mapping of solid samples in various fields. However, processing the large data volumes generated during laser scanning is time-consuming and labor-intensive. To address this issue, we developed an automated data processing program that uses penalized asymmetric least squares to detect peaks and integrate intensities. The system, built in Python with a user-friendly GUI, reads the raw data, identifies peaks, integrates the intensities, links them with laser position data, and visualizes the distribution of measured isotopes (Fig. 2).

We applied the program to process 547,200 data points obtained from elemental mapping of a mouse molar by online isotope-dilution LA–ICP–MS. The process was completed in ~30 seconds, compared with 20 hours for manual processing, and successfully visualized the distribution of strontium isotopes²⁾. We also demonstrated the accuracy of quantification using the certified glass standard (SRM 612). The measured strontium concentrations were consistent with certified values. This approach significantly reduces processing time and manual effort and is applicable to other high-throughput analytical techniques.

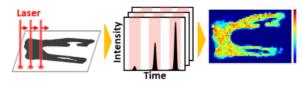


Fig. 2 Illustration of the automated data-processing workflow for LA-ICP-MS analysis

References

- 1) T. Toigawa, T. Kai, Y. Kumagai, A. Yokoya, *J. Chem. Phys.* 160, 214119 (2024).
- 2) K. Yanagisawa, H. Yokota, K. Fujimoto, Y. Takagai, *BUNSEKI KAGAKU* 73, 515-522 (2024) (*in Japanese*).

Contact (Group Leader): KUMAGAI Yuta kumagai.yuta@jaea.go.jp

Development Group for Nuclear Engineering Technology

Our group focuses on advancing chemical research on radioisotopes at the Nuclear Science and Engineering Research Center from a technological standpoint. We possess expertise in safely handling plutonium (Pu) and high-activity radioactive materials in hot cells and glove boxes. Using these capabilities, we are developing separation processes that employ novel extractants and methods to isolate minor actinides (MAs) and fission products.

We collaborate with the NXR Development Center to conduct experimental research aimed at recovering valuable elements from high-level liquid waste. We are also partnering with the Experimental Fast Reactor JOYO to develop separation and purification technology for actinium (Ac)-225, a promising isotope for medical applications. Furthermore, in collaboration with the Collaborative Laboratories for Advanced Decommissioning Science, we are analyzing actual debris from the Fukushima Daiichi Nuclear Power Plant. These efforts contribute to the advancement fundamental separation and technologies that support the utilization of nuclear energy.

Optimization of SELECT Process

Our research group has proposed a novel hydrometallurgical process called SELECT (Solvent Extraction from Liquid waste using Extractants of CHON-type for Transmutation) to recycle nuclear materials and separate MAs. Among the steps in the SELECT process, an optimized flow sheet was developed for recovering MAs and rare earths (REs) and for separating REs from MAs, using a simulation code called PARC-MA¹⁾. The extractants used in the former and the latter steps are TDdDGA and HONTA, respectively.

The flow sheet indicated that the weight ratio of MAs in the MA fraction >99%. In addition, the weight ratio of RE to MA distributed to the MA fraction (0.053), the weight ratio of MA to FP in the liquid waste (0.0013), and the volumetric ratio of the raffinate to high-level liquid waste (4.7) all met their respective target criteria: <0.1, <0.002, and <10 (Fig. 1).

Technology for Separating Am-241 in Aged Pu

Radioisotope thermoelectric generators using the decay heat of Pu-238 have been applied in deep-space missions beyond Jupiter, where solar power is limited. However, no facilities exist in Japan to

produce Pu-238 for space probes. Moreover, the use of nuclear fuel materials for space exploration is restricted in terms of regulations. Thus, we focused on Am-241 as an alternative heat source. We investigated the separation of Am-241 produced by the decay of Pu-241 in aged plutonium oxide²⁾. Two experiments were conducted: solidliquid extraction alone and a combined method utilizing both liquid-liquid extraction and solidliquid extraction. Packed columns were employed in the separations, and the combined method reduced the number of required columns to less than one-fifth that of the solid-liquid extraction alone. Furthermore, the combined method was faster. Six separation experiments were performed, and a total of 0.43 g of Am-241 was collected as oxalate (Fig. 2).

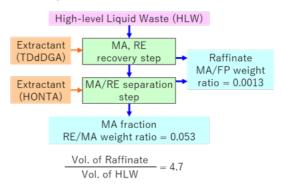


Fig. 1 Outline of the optimized flow sheet

Fig. 2 Precipitation of americium oxalate

References

1) Y. Tsubata, et al., *JAEA-Data/Code* 2008-010 (2008). 2) T. Emori, et al., *JAEA-Technology* 2024-025 (2025).

Contact (Group Leader): KITATSUJI Yoshihiro kitatsuji.yoshihiro@jaea.go.jp

Publication list

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Nuclear Science and Engineering Center

First-authored Papers

- (1) Effects of spacer on entrainment and deposition behavior of droplets in simplified subchannel of light water cooled fast reactor RBWR, YOSHIDA Hiroyuki, HORIGUCHI Naoki, FURUICHI Hajime, KAMITONO Ken, Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 7 (2023).
- (2) Evaluation of relative biological effectiveness for diseases of the circulatory system based on microdosimetry, <u>SATO Tatsuhiko</u>, MATSUYA Yuya, HAMADA Nobuyuki, Journal of Radiation Research (Internet), 65, 500 (2024).
- (3) Development of a forward Monte Carlo based weight-window generator using the history-counter function in PHITS, <u>SATO Tatsuhiko</u>, HASHIMOTO Shintaro, ARQUEZ Damian J. I., NIIDA Koji, Nuclear Instruments and Methods in Physics Research B, 557, 165535 (2024).
- (4) Establishment of a practical methodology for evaluating equieffective dose of individual patients based on RT-PHITS, <u>SATO Tatsuhiko</u>, FURUTA Takuya, SASAKI Hidetaka, WATANABE Naofumi, EJNMMI Physics (Internet), 12, 28 (2025).

Co-authored Papers

- (1) Prediction of interfacial shear stress and pressure drop in vertical two-phase annular flow, ZHANG H., UMEHARA Yutaro, YOSHIDA Hiroyuki, MORI Syouji, International Journal of Heat and Mass Transfer, 218, 124750 (2024).
- (2) Flexible waste management system for the future application of MA technology to the current high-level liquid waste, FUKAZAWA Tetsuo, SUZUKI Akihiro, et al., Journal of Nuclear Science and Technology, 61, 307 (2024).
- (3) The Role of deposition of cosmogenic 10Be for the detectability of solar proton events, SCHAAR K., SPIEGL T., LANGEMATZ U., SATO Tatsuhiko, MEKHALDI F., et al., Journal of Geophysical Research; Atmospheres, 129, e2023JD040463 (2024).
- (4) Comparative evaluation of two analytical functions for the microdosimetry of ions from 1H to 238U, PARISI A., FURUTANI K. M., SATO Tatsuhiko, BELTRAN C. J., Quantum Beam Science (Internet), 8, 18 (2024).
- (5) LET-based approximation of the microdosimetric kinetic model for proton radiotherapy, PARISI A., FURUTANI K. M., SATO Tatsuhiko, BELTRAN C. J., Medical Physics, 51, 7589 (2024).
- (6) Relationships between protection and operational dosimetric quantities for external exposure to natural background radiation, ULANOWSKI A., SATO Tatsuhiko, PETOUSSI-HENSS N., BALONOV M., Radiation and Environmental Biophysics, 11 (2025).
- (7) The Impact of ENSO on near-surface Beryllium-7, SCHAAR K., SPIEGL T., SATO Tatsuhiko, LANGEMATZ U., Journal of Environmental Radioactivity, 282, 107592 (2025).
- (8) Calculations of mean quality factors and their implications for organ-specific Relative Biological Effectiveness (RBE) in analysis of radiation-related risk in the atomic bomb survivors, SHIMIZU Syota, SATO Tatsuhiko, ENDO Akira, et al., Radiation Research, 203, 155 (2025).

Publication list

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Nuclear Data Center

First-authored Papers

- (1) Neutron filtering system for neutron capture cross section measurement at the ANNRI beamline of MLF/J-PARC, ROVIRA Leveroni G., KIMURA Atsushi, NAKAMURA Shoji, ENDO Shunsuke, IWAMOTO Osamu, et al., 15th International Conference on Nuclear Data for Science and Technology (ND2022), 284, 06007 (2023).
- (2) Total and double differential scattering cross-section measurements of isotropic graphite, <u>KIMURA Atsushi</u>, ENDO Shunsuke, NAKAMURA Shoji, 6th International Workshop On Nuclear Data Evaluation for Reactor Applications (WONDER 2023), 294, 01002 (2024).
- (3) Evaluation of thermal neutron scattering law of nuclear-grade isotropic graphite, <u>NAKAYAMA Shinsuke</u>, IWAMOTO Osamu, KIMURA Atsushi, 6th International Workshop On Nuclear Data Evaluation for Reactor Applications (WONDER 2023), 294, 07001 (2024).
- (4) Neutron capture cross section measurement of ¹²⁹I and ¹²⁷I using the NaI(TI) spectrometer of the ANNRI beamline at J-PARC, <u>ROVIRA Leveroni G.</u>, KIMURA Atsushi, NAKAMURA Shoji, ENDO Shunsuke, IWAMOTO Osamu, et al., European Physical Journal A, 60, 120 (2024).
- (5) Circular polarization measurement for individual gamma rays in capture reactions with intense pulsed neutrons, <u>ENDO Shunsuke</u>, ABE Ryota, FUJIOKA Hiroyuki, INO Takashi, IWAMOTO Osamu, et al., European Physical Journal A, 60, 166 (2024).
- (6) Measurements of neutron capture cross-sections for nuclides of interest in decommissioning; ⁴⁵Sc, ⁶³Cu, ⁶⁴Zn, ¹⁰⁹Ag, and ¹¹³In, <u>NAKAMURA Shoji</u>, SHIBAHARA Yuuji, ENDO Shunsuke, ROVIRA Leveroni G., KIMURA Atsushi, Journal of Nuclear Science and Technology, 61, 1415 (2024).
- (7) Measurements of neutron capture cross-section for nuclides of interest in decommissioning (III); ¹⁷⁰Er(n,g)¹⁷¹Er and ¹⁸⁰Hf(n,g)¹⁸¹Hf reactions, <u>NAKAMURA Shoji</u>, SHIBAHARA Yuuji, ENDO Shunsuke, ROVIRA Leveroni G., KIMURA Atsushi, Journal of Nuclear Science and Technology, 14 (2025).
- (8) Measurements of neutron capture cross-section for nuclides of interest in decommissioning (II); ⁵⁸Fe(n,g)⁵⁹Fe, NAKAMURA Shoji, SHIBAHARA Yuuji, ENDO Shunsuke, ROVIRA Leveroni G., KIMURA Atsushi, Journal of Nuclear Science and Technology, 62, 300 (2025).

Co-authored Papers

- (1) Constraints on the dipole photon strength for the odd uranium isotopes, MORENO-SOTO J., KIMURA Atsushi, et al., Physical Review C, 105, 024618 (2022).
- (2) ⁷⁴Ge(n,g) cross section below 70 keV measured at TOF CERN, LEDERER-WOODS C., HARADA Hideo, KIMURA Atsushi, et al., European Physical Journal A, 58, 239 (2022).
- (3) Advances and new ideas for neutron-capture astrophysics experiments at CERN TOF, DOMINGO-PARDO C., KIMURA Atsushi, et al., European Physical Journal A, 59, 8 (2023).
- (4) Measurements of the neutron capture cross section of Am-243 with the ANNRI beamline, MLF/J-PARC, KODAMA Yuu, KATABUCHI Tatsuya, ROVIRA Leveroni G., KIMURA Atsushi, NAKAMURA Shoji, et al., 15th International Conference on Nuclear Data for Science and Technology (ND2022), 284, 01024 (2023).

- (5) Neutron capture cross section measurement and resonance analysis of ¹⁰⁷Pd using ANNRI at MLF/J-PARC, NAKANO Hideto, KATABUCHI Tatsuya, TERADA Kazushi, KIMURA Atsushi, NAKAMURA Shoji, et al., EPJ Web of Conferences (ND2022), 284, 01032 (2023).
- (6) Status report of the TOF facility after the 2nd CERN long shutdown period, PATRONIS N., KIMURA Atsushi, et al., EPJ Techniques and Instrumentation (Internet), 10, 13 (2023).
- (7) Measurement of the ¹⁴N(n, p)¹⁴C cross section at the CERN TOF facility from subthermal energy to 800 keV, TORRES-S¥'ANCHEZ P., HARADA Hideo, KIMURA Atsushi, et al., Physical Review C, 107, 064617 (2023).
- (8) Measurement of the ⁷⁷Se(n,g) cross section up to 200 keV at the TOF facility at CERN, SOSNIN N. V., HARADA Hideo, KIMURA Atsushi, et al., Physical Review C, 107, 065805 (2023).
- (9) Measurement of the neutron-induced fission cross section of ²³⁰Th at the CERN TOF facility, MICHALOPOULOU V., HARADA Hideo, KIMURA Atsushi, et al., Physical Review C, 108, 014616 (2023).
- (10) EXFOR-based simultaneous evaluation for neutron-induced fission cross section of plutonium-242, OKUYAMA Riko, OHTSUKA Naohiko, CHIBA Go, IWAMOTO Osamu, Journal of Nuclear Science and Technology, 61, 57 (2024).
- (11) Measurement of the ¹⁴⁰Ce(n, g) cross section at TOF and its astrophysical implications for the chemical evolution of the universe, AMADUCCI S., HARADA Hideo, KIMURA Atsushi, et al., Physical Review Letters, 132, 122701 (2024).
- (12) Measurement of the prompt fission g-rays from slow neutron-induced fission of ²³⁵U with STEFF, WRIGHT T., HARADA Hideo, KIMURA Atsushi, et al., European Physical Journal A, 60, 70 (2024).
- (13) Spin dependence in the p-wave resonance of ¹³⁹La, OKUDAIRA Takuya, NAKABE Rintaro, AUTON C. J., ENDO Shunsuke, FUJIOKA Hiroyuki, et al., Physical Review C, 109, 044606 (2024).
- (14) High sensitivity of a future search for effects of P-odd/T-odd interactions on the 0.75 eV p-wave resonance in ¹³⁹La forward transmission determined using a pulsed neutron beam, NAKABE Rintaro, AUTON C. J., ENDO Shunsuke, FUJIOKA Hiroyuki, GUDKOV V., et al., Physical Review C, 109, L041602 (2024).
- (15) A Segmented Total Energy Detector (sTED) optimized for (n,g) cross-section measurements at n_TOF EAR2, ALCAYNE V., KIMURA Atsushi, et al., Radiation Physics and Chemistry, 217, 111525 (2024).
- (16) Difference in peripherality of the inclusive (p, p'x) and (d, d'x) reactions and its implications for a phenomenological reaction model, NAKADA Hibiki, NAKAYAMA Shinsuke, YOSHIDA Kazuki, WATANABE Yukinobu, OGATA Kazuyuki, Physical Review C, 110, 014616 (2024).
- (17) Pushing the high count rate limits of scintillation detectors for challenging neutron-capture experiments, BALIBREA-CORREA J., KIMURA Atsushi, et al., Nuclear Instruments and Methods in Physics Research A, 1064, 169385 (2024).
- (18) Shedding light on the origin of ²⁰⁴Pb, the heaviest s-process; Only isotope in the solar system, CASANOVAS-HOSTE A., HARADA Hideo, KIMURA Atsushi, et al., Physical Review Letters, 133, 052702 (2024).
- (19) Production cross-sections of residual nuclides from ⁹³Zr + p at 27 MeV/nucleon, HWANG J., CHILLERY T., DOUZON Masamichi, IMAI Nobuaki, MICHIMASA Shinichiro, et al., Progress of Theoretical and Experimental Physics (Internet), 2024, 093D03 (2024).
- (20) Fission fragment yields of ²³⁵U(n_th, f) evaluated with the CCONE code system, MINATO Futoshi,

- IWAMOTO Osamu, Physical Review C, 110, 054311 (2024).
- (21) Transverse asymmetry of individual g rays in the 139 La(n, g) 140 La reaction, OKUIZUMI Mao, AUTON C. J., ENDO Shunsuke, FUJIOKA Hiroyuki, HIROTA Katsuya, et al., Physical Review C, 111, 034611 (2025).

Unreviewed Papers

- (1) Nuclear data sheets for A=126, <u>IIMURA Hidenori</u>, KATAKURA Junichi, OHYA Susumu, Nuclear Data Sheets, 180.0, 1 (2022).
- (2) Neutron capture cross section measurement of ¹²⁹I and ¹²⁷I using ANNRI at MLF/J-PARC, <u>ROVIRA Leveroni</u> G., KIMURA Atsushi, NAKAMURA Shoji, ENDO Shunsuke, et al., JAEA-Conf 2023-001, 74 (2024).
- (3) Neutron capture cross-section measurements at TC-Pn in KUR for nuclides of concern in decommissioning, <u>NAKAMURA Shoji</u>, ENDO Shunsuke, ROVIRA Leveroni G., KIMURA Atsushi, et al., KURNS Progress Report 2023, (2024).
- (4) Report on the 36th Meeting of Working Party on International Nuclear Data Evaluation Co-operation (WPEC) of NEA, <u>IWAMOTO Osamu</u>, IWAMOTO Nobuyuki, TADA Kenichi, KATABUCHI Tatsuya, Nuclear Data News (Internet), 1, (2024). (in Japanese)
- (5) Overview and future of JENDL-5, IWAMOTO Osamu, JAEA-Conf 2024-002, 41 (2024).
- (6) Development of the evaluated nuclear data library JENDL-5; Toward innovation in diverse radiation applications, <u>IWAMOTO Osamu</u>, Journal of the Atomic Energy Society of Japan, ATOMOΣ, 67.0, 103 (2025). (in Japanese)

JAEA Reports

(1) Report of nuclear data roadmap 2023, NAKAYAMA Shinsuke, JAEA-Review 2024-009, (2024).

Publication list

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Reactor Physics and Thermal-Hydraulics Technology

First-authored Papers

- (1) Prediction of critical heat flux for the forced convective boiling based on the mechanism, <u>ONO Ayako</u>, SAKASHITA Hiroto, YAMASHITA Susumu, SUZUKI Takayuki, YOSHIDA Hiroyuki, Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 7, (2022).
- (2) Development of high-fidelity multi-physics platform JAMPAN, <u>TADA Kenichi</u>, KONDO Ryoichi, KAMIYA Tomohiro, NAGATAKE Hiroshi, ONO Ayako, et al., Proceedings of International Conference on Physics of Reactors (PHYSOR 2024) (Internet), 1488, (2024).
- (3) Generation and verification of ORIGEN and ORIGEN-S activation cross-section libraries of JENDL-5 and JENDL/AD-2017, <u>KONNO Chikara</u>, KOUCHIYAMA Yumi, HAYAHI Kouichi, Mechanical Engineering Journal (Internet), 11, 23-00386 (2024).
- (4) Development of a simplified boiling model applied for large-scale detailed two-phase flow simulations based on the VOF method, <u>ONO Ayako</u>, SAKASHITA Hiroto, YAMASHITA Susumu, SUZUKI Takayuki, YOSHIDA Hiroyuki, Mechanical Engineering Journal (Internet), 11, 24-00188 (2024).
- (5) Implementation of track length estimator for flux distribution tallies using proper orthogonal decomposition in one-dimensional geometry, <u>KONDO Ryoichi</u>, ENDO Tomohiro, YAMAMOTO Akio, Joint International Conference on Supercomputing in Nuclear Applications + Monte Carlo (SNA + MC 2024), 302, 04002 (2024).
- (6) Neutronics/thermal-hydraulics coupling simulation using JAMPAN in a single BWR fuel assembly, <u>KAMIYA Tomohiro</u>, NAGATAKE Hiroshi, ONO Ayako, TADA Kenichi, KONDO Ryoichi, et al., Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 7, (2024).
- (7) Numerical investigation of accuracy of conductance-typed wire-mesh sensor using CFD and electrostatic simulations, <u>UESAWA Shinichiro</u>, ONO Ayako, YAMASHITA Susumu, YOSHIDA Hiroyuki, Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 7, (2024).
- (8) A Comparative study on the interfacial tension models of the particle method for the liquid-liquid-gas three-phase flow, <u>FUKUDA Takanari</u>, Proceedings of 13th Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS13) (Internet), 10, (2024).
- (9) Deep learning-based bubble detection with Swin Transformer, <u>UESAWA Shinichiro</u>, YOSHIDA Hiroyuki, Journal of Nuclear Science and Technology, 61, 1438 (2024).
- (10) Flux distribution tallies using proper orthogonal decomposition in Monte Carlo calculations, <u>KONDO Ryoichi</u>, ENDO Tomohiro, YAMAMOTO Akio, Journal of Nuclear Science and Technology, 61, 1536 (2024).
- (11) Review of JAEA's Monte Carlo codes for nuclear reactor core analysis, <u>NAGAYA Yasunobu</u>, EPJ Nuclear Sciences & Technologies (Internet), 11, 1 (2025).
- (12) Atomization mechanisms in the vortex-like flow of a wall-impinging jet in a shallow pool, <u>HORIGUCHI</u> Naoki, YOSHIDA Hiroyuki, KANEKO Akiko, ABE Yutaka, Physics of Fluids, 37, 033333 (2025).

(13) 3D visualization in rod bundle flow channel using deep learning-based bubble detection, <u>UESAWA Shinichiro</u>, ONO Ayako, YOSHIDA Hiroyuki, Konsouryuu, 39, 61 (2025). (in Japanese)

Co-authored Papers

- (1) Whole core analysis of BEAVRS benchmark for hot zero power condition using MVP3 with JENDL-5, SUZUKI Motomu, NAGAYA Yasunobu, Journal of Nuclear Science and Technology, 61, 177 (2024).
- (2) Data assimilation using deterministic sampling method to selectively reduce uncertainty due to thermal neutron scattering law for light water, HARADA Yoshinari, YAMAGUCHI Kyou, ENDO Tomohiro, YAMAMOTO Akio, TADA Kenichi, Transactions of the American Nuclear Society, 130, 758 (2024).
- (3) Breakup of single droplet induced by high weber number flow behind shock wave, ASAHAERA Makoto, IWASAKI Kouta, KAMIYA Tomohiro, et al., Konsouryuu, 38, 175 (2024). (in Japanese)
- (4) Droplet evaporation characteristics on high-temperature porous surfaces for cooling fuel debris, YUUKI Kouhei, HORIGUCHI Naoki, YOSHIDA Hiroyuki, et al., Proceedings of 31st International Conference on Nuclear Engineering (ICONE31) (Internet), 4 (2024).
- (5) Development of advanced AI-based segmentation and prediction method for air entrainment in plunging water jets, ZHOU W., MIWA Syuuichiro, YAMASHITA Susumu, OKAMOTO Takashi, Progress in Nuclear Energy, 177, 105441 (2024).
- (6) Evaluation of uranium-233 neutron capture cross section in keV region, OHTSUKA Naohiko, TADA Kenichi, CABELLOS O., IWAMOTO Osamu, Annals of Nuclear Energy, 212, 110977 (2025).

Unreviewed Papers

- (1) Development of the numerical simulation method for molten core behavior in lower head based on MPS method, NAGATAKE Taku, YOSHIDA Hiroyuki, Proceedings of 12th Japan-Korea Symposium on Nuclear Thermal Hydraulics and Safety (NTHAS12) (Internet), 2 (2022).
- (2) Measurement of void fraction distribution at high pressure in 4¥times4 simulated fuel bundle for validation of thermal-hydraulics simulation codes, NAGATAKE Taku, SHIBATA Mitsuhiko, UESAWA Shinichiro, ONO Ayako, et al., Proceedings of 27th National Symposium on Power and Energy Systems (Internet), 5, (2023). (in Japanese)
- (3) Investigation on behavior of a vortical liquid film of a wall-impinging liquid jet in a shallow pool, HORIGUCHI Naoki, YOSHIDA Hiroyuki, KANEKO Akiko, ABE Yutaka, Proceedings of 29th Conference of Kanto Branch of the Japan Society of Mechanical Engineers(Internet), 5 (2023). (in Japanese)
- (4) Development of multi-dimensional sharp-interface method based on conservation law for liquid-gas two-phase compressible fluid simulations, KAMIYA Tomohiro, YOSHIDA Hiroyuki, Proceedings of 37th Symposium on Computational Fluid Dynamics (Internet), 8 (2023). (in Japanese)
- (5) Development of the ghost fluid method satisfying conservation laws for liquid-gas flow with shock wave, KAMIYA Tomohiro, YOSHIDA Hiroyuki, Proceedings of Symposium of Shock Wave in Japan (Internet), 7 (2024). (in Japanese)
- (6) Measurement of void fraction distribution at high pressure in simulated fuel bundle for validation of thermal-hydraulics simulation codes, ONO Ayako, NAGATAKE Taku, UESAWA Shinichiro, SHIBATA Mitsuhiko, et al., Proceedings of Specialist Workshop on Advanced Instrumentation and Measurement Techniques for Nuclear Reactor Thermal-Hydraulics and Severe Accidents (SWINTH-2024) (USB Flash Drive), 7, (2024).

- (7) Development of measurement method for gas-liquid two-phase flow inside a fuel bundle to obtain code validation data, ONO Ayako, OKAMOTO Kaoru, MAKINO Yasushi, HOSOKAWA Shigeo, Proceedings of Specialist Workshop on Advanced Instrumentation and Measurement Techniques for Nuclear Reactor Thermal-Hydraulics and Severe Accidents (SWINTH-2024) (USB Flash Drive), 13,(2024).
- (8) My impressions of participating in Physor2024, TADA Kenichi, Research of Reactor Physics (Internet), 6, (2024). (in Japanese)
- (9) Visualization of 3D behavior of dispersed bubbles using deep learning-based bubble detection technique, UESAWA Shinichiro, ONO Ayako, YOSHIDA Hiroyuki, Proceedings of 52nd Visualization Information Symposium (Internet), 2, (2024). (in Japanese)
- (10) Bubble visualization in rod bundle flow channel using deep learning-based bubble detection, UESAWA Shinichiro, ONO Ayako, YOSHIDA Hiroyuki, Proceedings of Multiphase Flow Symposium 2024 (Internet), 2 (2024). (in Japanese)
- (11) Participation report on the IAEA Technical Meeting on Nuclear Data Retrieval, Dissemination, and Data Portals, TADA Kenichi, KAWASE Shoichiro, Nuclear Data News (Internet), 26 (2025). (in Japanese)

JAEA Reports

(1) Nuclear heating and damage data in JENDL-5 neutron ACE library, <u>KONNO Chikara</u>, JAEA-Conf 2024-002, 80 (2024).

Publication list

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Nuclear Transmutation System

First-authored Papers

- (1) Development of numerical analysis method of oxygen concentration near wall of lead-bismuth eutectic channel, <u>WATANABE Nao</u>, YAMASHITA Susumu, UESAWA Shinichiro, NISHIHARA Kenji, YOSHIDA Hiroyuki, Proceedings of 20th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-20) (Internet), 3522, (2023).
- (2) Comparison of calculated bare critical masses between two versions of the Japanese Evaluated Nuclear Data Library, JENDL-5 and JENDL-4.0, <u>OIZUMI Akito</u>, Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10, (2023).
- (3) Experiments on central reaction rate ratios and fission distributions in the FCA-XXII-1 assembly simulating highly enriched MOX fueled tight lattice LWR cores, <u>FUKUSHIMA Masahiro</u>, ANDOH Masaki, NAGAYA Yasunobu, Nuclear Science and Engineering, 199, 1029, (2024).
- (4) Comprehensive estimation of nuclide production cross sections using a phenomenological approach, IWAMOTO Hiroki, MEIGO Shinichiro, SUGIHARA Kenta, Physical Review C, 109, 054610 (2024).
- (5) ZEUS: Fast-spectrum critical assembly with a mixed core of highly enriched and natural uranium containing lead surrounded by a copper reflector, <u>OIZUMI Akito</u>, FUKUSHIMA Masahiro, GUNJI Satoshi, MCKENZIE George, AMUNDSON Kelsey, International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook (2022/23 edition) (Internet), 313, (2024).
- (6) The Impact of nuclear fuel cycle operation factor uncertainty on nuclear power plant operation, <u>ABE Takumi</u>, NISHIHARA Kenji, Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (7) Design policy of pilot plant for accelerator-driven system, <u>NISHIHARA Kenji</u>, SUGAWARA Takanori, FUKUSHIMA Masahiro, IWAMOTO Hiroki, et al., Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (8) Evaluation of uncertainties caused by nuclear data with respect to the Pu amount in spent MOX fuel by burn-up sensitivity analysis, <u>OIZUMI Akito</u>, Proceedings of the 45th Annual Meeting of INMM Japan Chapter (Internet), 4, (2024). (in Japanese)
- (9) Experiments on criticality and reactivity worths in the FCA-XXII-1 assembly simulating highly enriched MOX fueled tight lattice LWR cores, <u>FUKUSHIMA Masahiro</u>, ANDOH Masaki, NAGAYA Yasunobu, Nuclear Science and Engineering, 199, 18 (2025).
- (10) Comprehensive Bayesian machine learning approach to estimating the total nuclear capture rate of a negative muon, IWAMOTO Hiroki, NIIKURA Kaname, MIZUMO Rurie, Physical Review C, 111, 034614 (2025).

Co-authored Papers

- (1) Measurement of nuclide production cross sections for GeV-region proton-induced reactions on natMg, natSi, natFe, natCu, and natZn, SUGIHARA Kenta, MEIGO Shinichiro, IWAMOTO Hiroki, MAEKAWA Fujio, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 549(9) 165299 (2024).
- (2) Initial verification of Cyclus and NMB fuel cycle simulators, Bachmann, A. M., Richards, S., Feng, B., NISHIHARA Kenji, ABE Takumi, Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (3) Impact of metal fuel fast reactor cycle implementation on back-end system including final disposal, TAKESHITA Kenji, OKAMURA Tomohiro, NAKASE Masahiko, NISHIHARA Kenji, ABE Takumi, Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (4) ZEUS: Fast-spectrum critical assemblies with a Pb-HEU core surrounded by a copper reflector, AMUNDSON Kelsey, FAVORITE Jefferey A, HUTCHINSON Jesson, OIZUMI Akito, International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook (2022/23 edition) (Internet), 313, (2024).
- (5) Uncertainty quantification of ²³⁷Np, ²⁴¹Am, and ²⁴³Am reaction rates in highly enriched uranium fuel cores at Kyoto University Critical Assembly, PYEON C. H., OIZUMI Akito, KATANO Ryota, FUKUSHIMA Masahiro, Nuclear Science and Engineering, 199, 429 (2025).
- (6) Built-in physics models and proton-induced nuclear data validation using MCNP, PHITS, and FLUKA; Impact on the shielding design for proton accelerator facilities, CELIK Yurdunaz, STANKOVSKIY Alexey, IWAMOTO Hiroki, IWAMOTO Yosuke, VAN DEN EYNDE Gert, Annals of Nuclear Energy, 212, 111048 (2025).

Unreviewed Papers

- (1) Development of nuclear technology for the future; Partitioning and transmutation technology, NISHIHARA Kenji, The Nuclear Almanac 2024, 78 (2023). (in Japanese)
- (2) Development of nuclear technology for the future, <u>NISHIHARA Kenji</u>, The Nuclear Almanac 2025, 75 (2024). (in Japanese)
- (3) R&D on nuclear transmutation technology, <u>NISHIHARA Kenji</u>, Energy and Resources, 45(6), 359 (2024). (in Japanese)
- (4) Proton beam utilization for space development equipment at J-PARC, MEIGO Shinichiro, YAMAGUCHI Yuji, IWAMOTO Hiroki, Proceedings of the 21st Annual Meeting of Particle Accelerator Society of Japan, WEOA01, (2024). (in Japanese)

JAEA Reports

- (1) Investigation of measurement accuracy of burnup reactivity of accelerator-driven system during normal operation, KATANO Ryota, ABE Takumi, CIBERT Herve, JAEA-Research 2024-019, (2024).
- (2) Conceptual Study of J-PARC Proton Beam Irradiation Facility, MEIGO Shinichiro, IWAMOTO Hiroki, SUGIHARA Kenta, HIRANO Yukinori, TSUTSUMI Kazuyoshi, SAITO Shigeru, MAEKAWA Fujio, JAEA-Technology 2024-026 (2024). (in Japanese)
- (3) Measurement of the spallation neutron spectrum by unfolding at 180° from 3-GeV protons and ^{nat}Hg with the ²⁰⁹Bi(n,xn) reactions, SUGIHARA Kenta, MEIGO Shinichiro, IWAMOTO Hiroki, MAEKAWA Fujio, JAEA-Conf 2024-002, pp.162–167 (2024).

Publication list

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Corrosion Resistant Materials

First-authored Papers

- (1) Effect of oxidants on corrosion of carbon steel under irradiation conditions, <u>SATO Tomonori</u>, KOMATSU Atsushi, NAKANO Jun-ichi, YAMAMOTO Masahiro, Corrosion Engineering, 70, 457 (2021). (in Japanese)
- (2) Positron annihilation lifetime spectroscopy investigation of thermal aging effect for the mechanical properties of hydrogen-absorbed tantalum, <u>ISHIJIMA Yasuhiro</u>, YOKOYAMA Kenichi, UENO Fumiyoshi, ABE Hitoshi, Materials Transactions, 63, 592 (2022).
- (3) Effect of dissolved ⁹⁰Sr and ¹³⁷Cs in HCl solutions on the corrosion potential of Type 316L stainless steel, AOYAMA Takahito, SATO Tomonori, UENO Fumiyoshi, KATO Chiaki, SANO Naruto, et al., Corrosion Engineering, 72, 284 (2023). (in Japanese)
- (4) Effect of dissolved oxygen on the corrosion behavior at the crevice surface in high temperature water under gamma-ray irradiation, <u>SATO Tomonori</u>, HATA Kuniki, KATO Chiaki, IGARASHI Takahiro, Corrosion Engineering, 73, 102 (2024). (in Japanese)
- (5) Evaluation of corrosion on steel surface using image processing, <u>IGARASHI Takahiro</u>, SUGAWARA Yu, OTANI Kyohei, AOYAMA Takahito, Tetsu-to-Hagane, 110, 1244 (2024). (in Japanese)
- (6) Analysis of dissolved radionuclides trapped into corrosion products formed on carbon steel and the corresponding increase in radioactivity, <u>AOYAMA Takahito</u>, UENO Fumiyoshi, SATO Tomonori, KATO Chiaki, SANO Naruto, et al., Annals of Nuclear Energy, 214, 111229 (2025).

Co-authored Papers

- (1) Estimation of the intergranular corrosion rate of stainless steel using cellular automata calculation considering stochastic process, YAMAMOTO Masahiro, IGARASHI Takahiro, Corrosion Modelling with Cellular Automata; European Federation of Corrosion Publications, Number 71, 131 (2024).
- (2) Relation between surface appearance and corrosion depth distribution of carbon steel under atmospheric corrosion environment, SUGAWARA Yu, IGARASHI Takahiro, Tetsu-to-Hagane, 110, 1179 (2024). (in Japanese)

Unreviewed Papers

- (1) Database for corrosion under irradiation, <u>SATO Tomonori</u>, HATA Kuniki, KAJI Yoshiyuki, TAGUCHI Mitsumasa, et al., Isotope News, 40 (2022). (in Japanese)
- (2) Effects of Cr on intergranular corrosion behavior of Fe-Cr-Ni alloys in simulated crevice environments in high temperature water, <u>SOMA Yasutaka</u>, IGARASHI Takahiro, Proceedings of the 70th Japan Conference on Materials and Environments (CD-ROM), 199 (2023). (in Japanese)
- (3) Effect of dissolved oxygen concentration on the corrosion behavior of stainless steel in liquid lead-bismuth alloy, IRISAWA Eriko, Taikabutsu, 76.0, 326 (2024). (in Japanese)

JAEA Reports

(1) Development of an Electrochemical Measurement Method for Carbon Steels in Radiation Source Dissolved Solution and a Corroded Specimen Analysis Method Using an Imaging Plate, N. Yamashita, T. Aoyama, C. Kato, N. Sano, and S. Tagami, *JAEA-Tech.*, 2023-028 (2023) (*in Japanese*).

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Radiation Materials Engineering

First-authored Papers

- (1) Evaluation of container using hybrid technique for thermochemical water-splitting iodine-sulfur process, IOKA Ikuo, KURIKI Yoshiro, IWATSUKI Jin, KUBO Shinji, YOKOTA Hiroki, KAWAI Daisuke, Proceedings of 30th International Conference on Nuclear Engineering (ICONE30) (Internet), 5, (2023).
- (2) Origin of excellent strength-ductility balance unique to FCC high-entropy alloys; A Plaston-based mechanism derived from electronic structure calculations, <u>TSURU Tomohito</u>, Materials Transactions, 65, 988 (2024).
- (3) Computational materials science for magnesium alloys, <u>TSURU Tomohito</u>, Mayama Tsuyoshi, Keikinzoku, 74, 442 (2024). (in Japanese)
- (4) Origin of the unique mechanical properties of refractory high-entropy alloys, <u>TSURU Tomohito</u>, HAN S., CHEN Z., LOBZENKO I., INUI Haruyuki, Nuclear Science and Engineering Research, 63, 695 (2024). (in Japanese)
- (5) Systematic experimental and model-based evaluation of the synergistic effects of alloy composition and damage rate on the formation of Cr-rich precipitates in Fe-Cr-Al alloys under ion irradiation, <u>ABE Yosuke</u>, SASAKI T Taisuke, YAMASHITA Shinichiro, OKUBO Nariaki, UKAI Shigeharu, Journal of Nuclear Materials, 600, 155271 (2024).
- (6) Effects of Al addition on Vickers hardness increase by thermal aging of Fe-Cr-Al alloys; Evaluation by systematic experiments, machine learning modeling, and first-principles calculations, <u>ABE Yosuke</u>, TSURU Tomohito, FUJITA Yohei, OHTOMO Masahide, SASAKI T Taisuke, et al., Journal of Nuclear Materials, 606, 155606 (2025).

- (1) Atomic stress state inside fcc and bcc random alloys; A First-principles approach, SHIIHARA Yoshinori, ITAI Yuki, LOBZENKO I., TSURU Tomohito, Frontiers in Materials (Internet), 9, 895626 (2022).
- (2) Damage accumulation and recovery involving vacancy-type defects enhanced by hydrogen in tempered martensitic steel showing quasi-cleavage fracture, SAITO Kei, HIRADE Tetsuya, TAKAI Kenichi, Key Engineering Materials, 967, 11 (2023).
- (3) Effects of local bonding between solute atoms and vacancy on formation of nanoclusters in Al-Mg-Si alloys, KURIHARA Kensuke, LOBZENKO I., TSURU Tomohito, SERIZAWA Ai, Materials Transactions, 64, 1930 (2023).
- (4) Temperature dependence of deformation and fracture in a beta titanium alloy of Ti-22V-4Al, YANO Rei, TANAKA Masaki, YAMASAKI Shigeto, MORIKAWA Tatsuya, TSURU Tomohito, Keikinzoku, 73, 497 (2023). (in Japanese)
- (5) Grain boundary plasticity in Mg binary alloys by segregation of p-block element, SOMEKAWA Hidetoshi, TSURU Tomohito, SINGH A., Materials Science ¥& Engineering A, 893, 146066 (2024).
- (6) Combining muon spin relaxation and DFT simulations of hydrogen trapping in Al₅Mn, SHIMIZU Kazuyuki, NISHIMURA Katsuhiko, MATSUDA Kenji, AKAMARU Satoshi, NUNOMURA Norio, et al., Scripta Materialia, 245, 116051 (2024).

- (7) Influence of MC carbides on pitting corrosion resistance of weld metal in austenitic stainless steels, KADOI Kota, KANNO Yudai, AOKI So, INOUE Hiroshige, ISIJ International, 64, 1450 (2024).
- (8) Quantification of radicals in aqueous solution by positronium lifetime; An Experiment using a clinical PET scanner, TAKYU Sodai, MATSUMOTO Ken-ichiro, HIRADE Tetsuya, NISHIKIDO Fumihiko, AKAMATSU Go, et al., Japanese Journal of Applied Physics, 63, 086003 (2024).
- (9) Control of twin boundary mobility by solute segregation in Mg binary alloys, SOMEKAWA Hidetoshi, TSURU Tomohito, NAITO Kimiyoshi, SINGH A., Scripta Materialia, 249, 116173 (2024).
- (10) Development of end-plug joint for SiC cladding and its evaluation during a severe accident, ISHIBASHI Ryo, HIROSAKA Kazuma, YAMANA Takashi, SHIBATA Masatoshi, SASAKI Masana, et al., Proceedings of TopFuel 2024 (Internet), 9 (2024).
- (11) First-principles calculations on dislocations in MgO, KIYOHARA Shin, TSURU Tomohito, KUMAGAI Yu, Science and Technology of Advanced Materials, 25, 2393567 (2024).
- (12) Temperature dependence of deformation and fracture in a beta titanium alloy of Ti-22V-4AI, YANO Rei, TANAKA Masaki, YAMASAKI Shigeto, MORIKAWA Tatsuya, TSURU Tomohito, Materials Transactions, 65, 1260 (2024).
- (13) Elucidation of the formation process and shape determining factors of GP zones and nanoclusters in Al-Cu and Al-Mg-Si alloys, SHOJI Mizuki, KURIHARA Kensuke, LOBZENKO I., TSURU Tomohito, SERIZAWA Ai, Keikinzoku, 74, 535 (2024). (in Japanese)
- (14) Novel approach to explore hydrogen trapping sites in aluminum; Integrating Muon spin relaxation with first-principles calculations, SHIMIZU Kazuyuki, NISHIMURA Katsuhiko, MATSUDA Kenji, NUNOMURA Norio, NAMIKI Takahiro, et al., International Journal of Hydrogen Energy, 95, 292 (2024).
- (15) Hydrogen embrittlement in Al-Zn-Mg alloys; Semispontaneous decohesion of precipitates, SHIMIZU Kazuyuki, TODA Hiroyuki, HIRAYAMA Kyosuke, FUJIHARA Hiro, TSURU Tomohito, et al., International Journal of Hydrogen Energy, 109, 1421 (2025).

Unreviewed Papers

- (1) Introduction of radiation damage research and atomic physics research at the JAEA tandem accelerator, ISHIKAWA Norito, JAEA-Conf 2022-002, , 111 (2023). (in Japanese)
- (2) Properties of duplex stainless steels, <u>AOKI So</u>, SAKAI Junichi, Zairyo To Kankyo, 73.0, 49 (2024). (in Japanese)
- (3) Development of standard substance for hydrogen analysis in materials, <u>OGAWA Hiroaki</u>, ISHIKAWA Norito, 2023-Nendo Daigaku Kenkyu Josei Gijutsu Kenkyu Hokokusho, 123 (2024). (in Japanese)
- (4) Development of Accident Tolerant Fuel (ATF) claddings, <u>NEMOTO Yoshiyuki</u>, Kiho Energy Sougou Kougaku, 47.0, 27 (2024). (in Japanese)

JAEA Reports

- (1) Study on high temperature steam oxidation behavior of Chromium, <u>NEMOTO Yoshiyuki</u>, JAEA-Research 2024-018, (2024). (in Japanese)
- (2) Application of EBSD as a method for analyzing irradiation damage in ceramics, <u>FUJIMURA Yuki</u>, ISHIKAWA Norito, KONDO Keietsu, JAEA-Technology 2024-012, (2024). (in Japanese)

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for High Temperature Science on Fuel Materials

First-authored Papers

- (1) Characterization of Cs deposits formed by the interaction of simulated fission product CsOH in the gas phase and concrete at 200 °C, <u>LUU V. N.</u>, NAKAJIMA Kunihisa, Mechanical Engineering Journal (Internet), 11, 23-00446 (2024).
- (2) Gaseous and aerosol formations in the pseudo-binary CsI-MoO₃ reaction system, <u>RIZAAL M.</u>, NAKAJIMA Kunihisa, SUZUKI Eriko, MIWA Shuhei, Proceedings of 11th European Review Meeting on Severe Accident Research Conference (ERMSAR 2024) (Internet), 11 (2024).
- (3) Development of Behavior Analysis Code for MA Transmutation Nitride Fuel in Accelerator-Driven System, SHIBATA Hiroki, SAITO Hiroaki, HAYASHI Hirokazu, TAKANO Masahide, Transactions of the Atomic Energy Society of Japan (Internet), 23, 74 (2024). (in Japanese)
- (4) Experimental determination of deposition velocity of CsOH aerosols on CaCO₃ at temperature range 170 290 °C, <u>LUU V. N.</u>, NAKAJIMA Kunihisa, Nuclear Engineering and Design, 426, 113402 (2024).
- (5) Advances in understanding cesium retention on calcium silicate material, <u>RIZAAL Muhammad</u>, NAKAJIMA Kunihisa, Chemosphere, 363, 142870 (2024).
- (6) Electrochemical behavior of neptunium in NaCl-2CsCl melt, <u>HAYASHI Hirokazu</u>, MINATO Kazuo, Electrochemistry (Internet), 92, 043020 (2024).
- (7) Effect of sea salt on the interaction between simulated corium and concrete, <u>SUDO Ayako</u>, SATO Takumi, TAKANO Masahide, Journal of Nuclear Science and Technology, 62, 573 (2025).
- (8) Chemical interaction of CsOH vapor with UO₂ and Fe-Zr melt, <u>NAKAJIMA Kunihisa</u>, TAKANO Masahide, Journal of Nuclear Science and Technology, 62, 78 (2025).

Unreviewed Papers

- (1) Toward evaluation of cesium chemistry during transportation in a boiling water reactor; Effects of boron on cesium chemistry, MIWA Shuhei, MIYAHARA Naoya, NAKAJIMA Kunihisa, IMOTO Junpei et al., Journal of the Atomic Energy Society of Japan, 63, 825 (2021). (in Japanese)
- (2) Updating fission product chemistry database based on recent investigation in Fukushima-Daiichi Nuclear Power Station, 3; High-temperature thermochemistry of CaCO₃-CsOH, RIZAAL M., LUU V. N., NAKAJIMA Kunihisa, MIWA Shuhei, Proceedings of International Topical Workshop on Fukushima-Daiichi Decommissioning Research 2024 (FDR2024) (Internet), 4, (2024).

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Environmental Science

First-authored Papers

- (1) Numerical simulations of convective boundary layers under different stability categories of the Pasquill-Gifford Chart, <u>SATO Takuto</u>, NAKAYAMA Hiromasa, SOLA (Scientific Online Letters on the Atmosphere) (Internet), 20, 371 (2024).
- (2) Large-Eddy Simulation of plume dispersion in a turbulent boundary layer flow generated by a dynamically controlled recycling method, <u>NAKAYAMA Hiromasa</u>, TAKEMI Tetsuya, Atmospheric Science Letters, 25, e1204 (2024).
- (3) Evaluation of the impact of the 137Cs supply from rivers to coastal waters off Fukushima on the 137Cs behavior in seabed sediment, IKENOUE Tsubasa, NAKANISHI Takahiro, SHIMADERA Hikaru, KAWAMURA Hideyuki, KONDŌ Akira, E3S Web of Conferences (Internet), 530, 02005 (2024).
- (4) Records of the riverine discharge of 129I in riverbank sediment after the Fukushima accident, <u>NAKANISHI</u> <u>Takahiro</u>, SAKUMA Kazuyuki, ŌYAMA Takuya, HAGIWARA Daiki, SUZUKI Takashi, Environmental Pollution, 355, 124213 (2024).
- (5) Quantitative importance of subsoil nitrogen cycling processes in Andosols and Cambisols under temperate forests, <u>NAKAYAMA Masataka</u>, ABE Yukiko, ANDOH Mariko, TANGE Takeshi, SAWADA Haruo, et al., Applied Soil Ecology, 201, 105485 (2024).
- (6) Uncovering the characteristics of plastic-associated biofilm from the inland river system of Mongolia, <u>BATTULGA B.</u>, MUNKHBAT D., MATSUEDA Makoto, ANDOH Mariko, OYUNTSETSEG B., et al., Environmental Pollution, 357, 124427 (2024).
- (7) Biofilm-mediated interactions between plastics and radiocesium in coastal environments, <u>BATTULGA B.</u>, NAKANISHI Takahiro, ANDOH Mariko, OTOSAKA Shigeyoshi, KOARASHI Jun, Environmental Science and Pollution Research, 31, 60080 (2024).
- (8) Dynamics and functions of microbial communities in the plastisphere in temperate coastal environments, <u>BATTULGA B.</u>, NAKAYAMA Masataka, MATSUOKA Toshimasa, KONDŌ Toshiaki, ANDOH Mariko, et al., Water Research, 264, 122207 (2024).
- (9) Separating urban heat island circulation and convective cells through dynamic mode decomposition, SATO Takuto, HINO Hideitsu, KUSAKA Hiroyuki, Atmospheric Science Letters, 25, e1279 (2024).
- (10) Large-eddy simulation analysis on the area of influence of local hilly terrains on plume dispersion released from a stack, <u>SATO Takuto</u>, GOGER B., NAKAYAMA Hiromasa, SOLA (Scientific Online Letters on the Atmosphere) (Internet), 21, 17 (2025).
- (11) Quantitative evaluation of carbon dioxide emissions from the subsoils of volcanic and non-volcanic ash soils in temperate forest ecosystems, <u>ABE Yukiko</u>, NAKAYAMA Masataka, ANDOH Mariko, TANGE Takeshi, SAWADA Haruo, et al., Geoderma, 455, 117221 (2025).
- (12) Evaluating sulfur-impurity removal and modern carbon contamination in different preparation methods for radiocarbon dating of soil samples by accelerator mass spectrometry, <u>KOARASHI Jun</u>, TAKEUCHI Erina, KOKUBUN Yōko, ANDOH Mariko, Radiocarbon, 67, 307 (2025).

Co-authored Papers

- (1) Development of a multi-scale meteorological Large-eddy simulation model for urban thermal environmental studies; The "City-LES" Model Version 2.0, KUSAKA Hiroyuki, IKEDA Ryōsaku, SATO Takuto, IIZUKA Satoru, BOKU Taisuke, Journal of Advances in Modeling Earth Systems (Internet), 16, e2024MS004367 (2024).
- (2) Comprehensive increase in CO₂ release by drying-rewetting cycles among Japanese forests and pastureland soils and exploring predictors of increasing magnitude, SUZUKI Yuri, HIRADATE Syuntaro, KOARASHI Jun, ANDOH Mariko, YOMOGIDA Takumi, et al., Soil (Internet), 11, 35 (2025).

Unreviewed Papers

- (1) Study on flow and turbulence characteristics measured by an on-site meteorological station at a nuclear facility for a real-time atmospheric dispersion simulation, <u>NAKAYAMA Hiromasa</u>, KŌNO Takaaki Proceedings of 22nd International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (HARMO22), 4, (2024).
- (2) To effective use of atmospheric dispersion calculations in nuclear emergency response and preparedness; Development of WSPEEDI-DB, <u>TERADA Hiroaki</u>, TSUDUKI Katsunori, KADOWAKI Masanao, NAGAI Haruyasu, Journal of the Atomic Energy Society of Japan ATOMOΣ, 67.0, 113 (2025). (in Japanese)

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Radiation Transport Analysis

First-authored Papers

- (1) The Impact of dose rate on responses of human lens epithelial cells to ionizing irradiation, MATSUYA Yusuke, SATO Tatsuhiko, YACHI Yoshie, DATE Hiroyuki, et al., Scientific Reports (Internet), 14, 12160 (2024).
- (2) Cell-cycle dependence on the biological effects of boron neutron capture therapy and its modification by polyvinyl alcohol, <u>MATSUYA Yusuke</u>, SATO Tatsuhiko, KUSUMOTO Tamon, YACHI Yoshie, et al., Scientific Reports (Internet), 14, 16696 (2024).
- (3) Dose-rate coefficients for external exposure to radionuclides uniformly distributed in soil to an infinite depth, <u>SATOH Daiki</u>, PETOUSSI-HENSS N, PLOS ONE (Internet), 19, e0310552 (2024).
- (4) Significant role of secondary electrons in the formation of a multi-body chemical species spur produced by water radiolysis, <u>KAI Takeshi</u>, TOIGAWA Tomohiro, MATSUYA Yusuke, HIRATA Yuho, et al., Scientific Reports (Internet), 14, 24722 (2024).
- (5) Construction of new polygon mesh-type phantoms based on adult Japanese voxel phantoms, <u>SATO Kaoru</u>, FURUTA Takuya, SATOH Daiki, TSUDA Shuichi, PLOS ONE (Internet), 19, e0309753 (2024).
- (6) Overview of PHITS Ver.3.34 with particular focus on track-structure calculation, <u>OGAWA Tatsuhiko</u>, HIRATA Yuho, MATSUYA Yusuke, KAI Takeshi, et al., EPJ Nuclear Sciences & Technologies (Internet), 10, 13 (2024).
- (7) Application of radiation transport code PHITS to life sciences, <u>MATSUYA Yusuke</u>, KAI Takeshi, SATO Tatsuhiko, Journal of Atomic Collision Research, 21, R008 (2024). (in Japanese)
- (8) Measurements of displacement cross sections of metals for 120-GeV proton beam irradiation, <u>IWAMOTO Yosuke</u>, MATSUDA Hiroki, MEIGO Shinichiro, YONEHARA Katsuya, et al., Nuclear Instruments and Methods in Physics Research B, 557, 165543 (2024).
- (9) Multiple DNA damages induced by water radiolysis demonstrated using a dynamic Monte Carlo code, KAI Takeshi, TOIGAWA Tomohiro, MATSUYA Yusuke, HIRATA Yuho, et al., Communications Chemistry (Internet), 8, 60 (2025).
- (10) Prediction of composite neutron source spectra by combination of JENDL-5 and PHITS, <u>OGAWA Tatsuhiko</u>, Annals of Nuclear Energy, 216, 111256 (2025).
- (11) Development of a model for evaluating the luminescence intensity of phosphors based on the PHITS track-structure simulation, <u>HIRATA Yuho</u>, KAI Takeshi, OGAWA Tatsuhiko, MATSUYA Yusuke, et al., Nuclear Instruments and Methods in Physics Research B, 547, 165183 (2024).
- (12) Changes in molecular conformation and electronic structure of DNA under 12C ions based on first-principles calculations, <u>SEKIKAWA Takuya</u>, MATSUYA Yusuke, HWANG Beomju, ISHIZAKA Masato, et al., Nuclear Instruments and Methods in Physics Research B, 548, 165231 (2024).

- (13) Recent improvements of the particle and heavy ion transport code system PHITS version 3.33, <u>SATO Tatsuhiko</u>, IWAMOTO Yosuke, HASHIMOTO Shintaro, OGAWA Tatsuhiko, et al., Journal of Nuclear Science and Technology, 61, 127 (2024).
- (14) A step-by-step simulation code for estimating yields of water radiolysis species based on electron trackstructure mode in the PHITS code, <u>MATSUYA Yusuke</u>, YOSHII Yuji, KUSUMOTO Tamon, AKAMATSU Ken, et al., Physics in Medicine & Biology. 69, 035005 (2024).
- (15) Defect formation simulated by track structure calculation model, <u>OGAWA Tatsuhiko</u>, IWAMOTO Yosuke, Nuclear Instruments and Methods in Physics Research B, 549 165255 (2024).

- (1) Impact of irradiation side on muon-induced single-event upsets in 65-nm Bulk SRAMs, DENG Y., WATANABE Yukinobu, MANABE Seiya, LIAO W, et al., IEEE Transactions on Nuclear Science, 71, 912 (2024).
- (2) Production rates of long-lived radionuclides ¹⁰Be and ²⁶Al under direct muon-induced spallation in granite quartz and its implications for past high-energy cosmic ray fluxes, SAKURAI Hirohisa, KUREBAYASHI Yutaka, SUZUKI Soichiro, HORIUCHI Kazuho, et al., Physical Review D, 109, 102005 (2024).
- (3) DNA damage response in a 2D-culture model by diffusing alpha-emitters radiation therapy (Alpha-DaRT), NOJIMA Hitomi, KAIDA Atsushi, MATSUYA Yusuke, UO Motohiro, et al., Scientific Reports (Internet), 14, 11468 (2024).
- (4) Evaluation of quenching characteristics of Li-containing scintillators, WATANABE Kenichi, OSHIMA Yuya, SHIGYO Nobuhiro, HIRATA Yuho, Japanese Journal of Applied Physics, 63, 056001 (2024).
- (5) Numerical intercomparison of PHITS and Geant4 Monte Carlo codes for fast neutron inelastic scattering applications, MELESHENKOVSKII I., VAN Den Brandt K., OGAWA Tatsuhiko, DATEMA C, et al., European Physical Journal Plus (Internet), 139, 565 (2024).
- (6) Coulomb spike model of radiation damage in wide band-gap insulators, COSTANTINI J-M., OGAWA Tatsuhiko, Quantum Beam Science (Internet), 8, 20 (2024).
- (7) In vitro and in silico study of biological effects on cancer cells in the presence of metallic materials during radiotherapy, NAGANO Takuya, MATSUYA Yusuke, KAIDA Atsushi, NOJIMA Hitomi, et al., Journal of Radiation Research (Internet), 65, 628 (2024).
- (8) Liquid water radiolysis induced by secondary electrons generated from MeV-energy carbon ions, TSUCHIDA Hidetsugu, TEZUKA Tomoya, KAI Takeshi, MATSUYA Yusuke, et al., Journal of Chemical Physics, 161, 104503 (2024).
- (9) Analytic and Monte Carlo calculations of dose-mean lineal energy for 1 MeV 1 GeV protons with application to radiation protection quality factor, PAPADOPOULOS A, KYRIAKOU I, MATSUYA Yusuke, CORTÉS-GIRALDO M. A, et al., Radiation and Environmental Biophysics, 64, 117 (2025).
- (10) Inverse dose protraction effects of low-LET radiation; Evidence and significance, HAMADA Nobuyuki, MATSUYA Yusuke, ZABLOTSKA L B, LITTLE M P, Mutation Research; Reviews in Mutation Research, 795, 108531 (2025).
- (11) Inverse dose protraction effects of high-LET radiation; Evidence and significance, HAMADA Nobuyuki, MATSUYA Yusuke, ZABLOTSKA L. B., LITTLE M. P, Mutation Research; Reviews in Mutation Research, 795, 108530 (2025).

- (12) Directional vector-based quick evaluation method for protective plate effects in X-ray fluoroscopy (DQPEX), HIZUKURI Kyoko, FUJIBUCHI Toshio, HAN D., ARAKAWA Hiroyuki, et al., Radiological Physics and Technology, 18, 196 (2025).
- (13) Consideration of the dielectric response for radiation chemistry simulations, TOIGAWA Tomohiro, KAI Takeshi, KUMAGAI Yuta, YOKOYA Akinari, et al., Journal of Chemical Physics. 160, 214119 (2024).
- (14) Monte Carlo simulation study on the dose and dose-averaged linear energy transfer distributions in carbon ion radiotherapy, ISHIKAWA Akihisa, KOBA Yusuke, FURUTA Takuya, Chang Weishan, et al., Radiological Physics and Technology, 17, 553 (2024).
- (15) Origin of the unique mechanical properties of refractory high-entropy alloys, TSURU Tomohito, HAN S, CHEN I, LOBZENKO Ivan, et al. Materia Japan, 63 (10), 695 (2024). (in Japanese)

Unreviewed Papers

- (1) Intercomparison of radiation damage calculations in target materials at proton accelerator facilities using various Monte Carlo particle transport codes, IWAMOTO Yosuke, ÇELIK Y, CERUTTI F, FROESCHL R, et al., Proceedings of 15th Workshop on Shielding aspects of Accelerators, Targets, and Irradiation Facilities (SATIF-15) (Internet), 25 (2022).
- (2) Simulation of cosmic ray induced soft errors using PHITS, <u>ABE Shinichiro</u>, CROSS T&T, 76, 39 (2024). (in Japanese)
- (3) Improvement and application of muon transport models implemented in the PHITS, <u>ABE Shinichiro</u>, Nuclear Data News (Internet), 138, 24 (2024). (in Japanese)

JAEA Reports

(1) Proceedings of the Joint Symposium on Nuclear Data and PHITS in 2023, SHIGYO Nobuhiro, FURUTA Takuya, IWAMOTO Yosuke, JAEA-Conf 2024-002, (2024).

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Nuclear Sensing

First-authored Papers

- (1) Characteristics of temporal variability of long-duration bursts of high-energy radiation associated with thunderclouds on the Tibetan plateau, <u>H. Tsuchiya</u>, K. Hibino, K. Kawata, M. Onishi, M. Takita, K. Munakata, C. Kato, S. Shimoda, Q. Shi, S. Wang, C. Han, L. Zhai, Progress of Earth and Planetary Science (Internet), 11, 26 (2024).
- (2) Monte Carlo simulation study on the dose and dose-averaged linear energy transfer distributions in carbon ion radiotherapy, A. Ishikawa, Y. Koba, T. Furuta, W. Chang, S. Yonai, S. Matsumoto, S. Hashimoto, Y. Hirai, T. Sato, Radiological Physics and Technology, 17, 553 (2024).
- (3) Effect of neutron beam properties on dose distributions in a water phantom for boron neutron capture therapy, <u>A. Ishikawa</u>, H. Tanaka, S. Nakamura, H. Kumada, Y. Sakurai, K. Watanabe, S. Yoshihashi, Y. Tanagami, A. Uritani, Y. Kiyanagi, Journal of Radiation Research (Internet), 65, 765 (2024).
- (4) Monte Carlo and experimental assessment of the optimal geometry of the source and collimator for a table-top NRTA system for small nuclear material measurement, <u>C. J. Guembou Shouop</u>, H. Tsuchiya, Nuclear Instruments and Methods in Physics Research A, 1072, 170189 (2025).
- (5) Development of neutron self-indication thermometry at J-PARC, M. Segawa, Y. Toh, M. Maeda, T. Kai, Journal of Nuclear Science and Technology, 62, 268 (2025).
- (6) Measurement of the thermal neutron capture-cross section of ¹⁹¹Ir at ANNRI MLF J-PARC, <u>K. Patwary</u>, M. Segawa, M. Maeda, Y. Toh, S. Endo, S. Nakamura, G. Rovira, A. Kimura, Journal of Nuclear Science and Technology, 61, 1385(2024).

- (1) Compact and transportable system for detecting lead-shielded highly enriched uranium using 252Cf rotation method with a water Cherenkov neutron detector, K. Tanabe, M. Komeda, Y. Toh, Y. Kitamura, T. Misawa, K. Tsuchiya, H. Sagara, Scientific Reports (Internet), 14, 18828 (2024).
- (2) Neutron capture cross section measurement of ¹²⁹I and ¹²⁷I using the NaI(TI) spectrometer of the ANNRI beamline at J-PARC, G. Rovira, A. Kimura, S. Nakamura, S. Endo, O. Iwamoto, N. Iwamoto, Y. Toh, M. Segawa, M. Maeda, T. Katabuchi, European Physical Journal A, 60, 120 (2024).

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Research Group for Nuclear Chemistry

First-authored Papers

- (1) Application of transition-edge sensors for micro-X-ray fluorescence measurements and micro-X-ray absorption near edge structure spectroscopy; a case study of uranium speciation in biotite obtained from a uranium mine, YOMOGIDA Takumi, HASHIMOTO Tadashi, OKUMURA Takuma, YAMADA Shinya, TATSUNO Hideyuki, et al., Analyst, 149, 2932 (2024).
- (2) Determination of ⁹⁰Sr in highly radioactive aqueous samples via conversion to a kinetically stable 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex followed by concentration-separation-fractionation based on capillary electrophoresis-liquid scintillation, <u>OUCHI Kazuki</u>, HARAGA Tomoko, HIROSE Kazuki, KUROSAWA Yuika, SATO Yoshiyuki, et al., Analytica Chimica Acta, 1298, 342399 (2024).
- (3) Analysis of particles containing alpha emitters in stagnant water in Fukushima Daiichi Nuclear Power Station's Unit 3 reactor building, <u>YOMOGIDA Takumi</u>, OUCHI Kazuki, MORII Shiori, OKA Toshitaka, KITATSUJI Yoshihiro, et al., Scientific Reports (Internet), 14, 14945 (2024).
- (4) Flow peak detection using penalized asymmetric least squares in on-line isotope dilution-laser ablation-inductively coupled plasma-mass spectrometry, YANAGISAWA Kayo, YOKOTA Hiromi, FUJIMOTO Katsushige, TAKAGAI Yoshitaka, BUNSEKI KAGAKU, 73, 515 (2024). (in Japanese)
- (5) Preliminary studies on ion-pair extractions of Zr, Hf, Nb, and Ta using extractants having tertiary N atom from H₂SO₄ and HF, SASAKI Yuji, KANEKO Masashi, MATSUMIYA Masahiko, Chemistry Letters, 53, upae164 (2024).
- (6) Evaluation of materials for developing a new individual dosemeter using electron spin resonance spectroscopy, <u>KITAMURA Yoshimasa</u>, OKA Toshitaka, SEITO Hajime, YOKOZUKA Eri, NAGASAWA Naotsugu, et al., Radiation Protection Dosimetry, 200, 1660 (2024).
- (7) Sensitive detection of nonfluorescent solutes in small amounts of dilute aqueous solutions through photothermally induced reflectivity modulation at glass/aqueous solution interfaces, <u>URASHIMA Shuhei</u>, KUSAKA Ryoji, Analyst, 150, 819 (2025).

- (1) Ion-pairing extraction and their reaction modeling of anionic M-CI species with cationic NTAamide(C6) extractant and comparison with density functional theory calculations, KINOSHITA Ryoma, SASAKI Yuji, KANEKO Masashi, MATSUMIYA Masahiko, SHINOKU Kota, SHIROISHI Hidenobu, Hydrometallurgy, 222, 106159 (2023).
- (2) Securing reversibility of $UVO_2^+/UVIO_2^{2+}$ redox equilibrium in Tf_2N -based liquid electrolytes towards uranium redox-flow battery, TAKAO Koichiro, OUCHI Kazuki, KOMATSU Atsushi, KITATSUJI Yoshihiro, WATANABE Masayuki, European Journal of Inorganic Chemistry, 27, e202300787 (2024).
- (3) ESR measurement of carbonated hydroxyapatite for dosemeter, SEITO Hajime, YOKOZUKA Eri, OKA Toshitaka, KITATSUJI Yoshihiro, NAGASAWA Naotsugu, Radiation Protection Dosimetry, 200, 1656 (2024).

- (4) Solvation structure and thermodynamics for Ln(III), (Ln=Pr, Nd, Tb and Dy) complexes in phosphonium-based ionic liquids evaluated by Raman spectroscopy and DFT calculation, TOKUMITSU Shun, MISHIMA Takumi, MATSUMIYA Masahiko, SASAKI Yuji, Journal of Molecular Liquids, 414, Part A, 126150 (2024).
- (5) Improved multicomponent analysis method for electron spin resonance spectra of gamma-irradiated tooth enamel, YAMASHITA Takuma, IWAMI Satone, MITSUYASU Yusuke, ONO Kenta, OKA Toshitaka, et al., KEK Proceedings 2024-6, 85 (2024). (in Japanese)
- (6) Study on microwave power dependency of electron spin resonance spectrum of carbonate radicals in teeth, IWAMI Satone, YAMASHITA Takuma, MITSUYASU Yusuke, ONO Kenta, OKA Toshitaka, et al., KEK Proceedings 2024-6, 91 (2024). (in Japanese)
- (7) Recovery of rhodium by solvent extraction using N, N, N', N', N'', N''-hexahexyl-nitrilotriacetamide and electrodeposition, MATSUMIYA Masahiko, TOKUMITSU Shun, MISHIMA Takumi, SASAKI Yuji, ECS Advances (Internet), 3, 043001 (2024).
- (8) Environmental geochemistry of radionuclides (Environmental radiochemistry), TAKAHASHI Yoshio, YAMAGUCHI Akiko, YOMOGIDA Takumi, Treatise on Geochemistry, 3rd edition, Vol.6, 105 (2025).

Unreviewed Papers

- (1) 4.11 Research projects for global pollution / 5.3.3 Dose estimation using teeth, <u>OKA Toshitaka</u>, Shitteru Tsumorino Houshasen Dokuhon (2023). (in Japanese)
- (2) Chemical reaction of uranium oxide induced by water radiolysis, <u>KUMAGAI Yuta</u>, HOUSHASEN, 49, 15 (2024). (in Japanese)

* Works with <u>underlined numbers</u> were published before FY2024 (not included in the lists of previous NSEC reports).

Development Group for Nuclear Engineering Technology

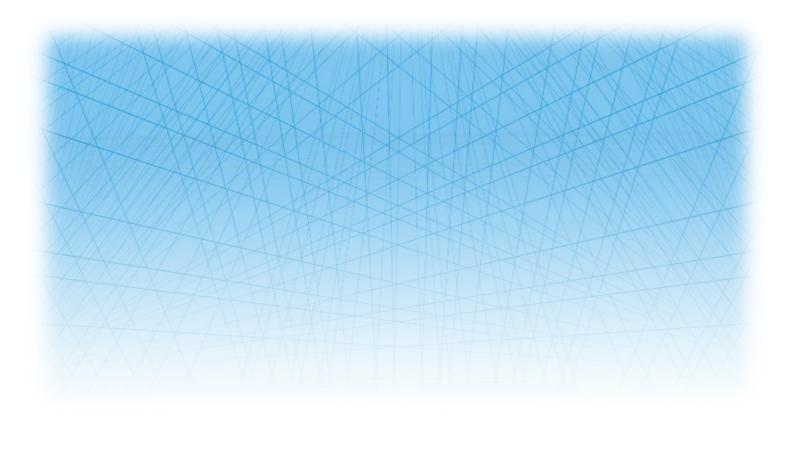
First-authored Papers

- (1) Consideration of the dielectric response for radiation chemistry simulations, <u>TOIGAWA Tomohiro</u>, KAI Takeshi, KUMAGAI Yuta, YOKOYA Akinari, Journal of Chemical Physics, 160, 214119 (2024).
- (2) Recovery of minor actinides from HLW using hexaoctyl nitrilotriacetamide (HONTA) by mixer-settler extractors, <u>BAN Yasutoshi</u>, SUZUKI Hideya, HOTOKU Shinobu, TSUBATA Yasuhiro, Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (3) Extraction properties of glycine-based amic-acid-type extractants toward minor actinides and rare earth elements, <u>NAKAMURA Satoshi</u>, SUZUKI Hideya, BAN Yasutoshi, OHASHI Akira, Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (4) Development of a dissolution method for analyzing the elemental composition of fuel debris using sodium peroxide fusion technique, <u>NAKAMURA Satoshi</u>, ISHII Sho, KATO Hitoshi, BAN Yasutoshi, HIRUTA Kenta, et al., Journal of Nuclear Science and Technology, 62, 56 (2025).

Co-authored Papers

- (1) Investigation on fuel cycle based on actinide management towards sustainable use of nuclear energy (1) Challenges of LWR fuel cycle and research overview, YAMAMURA Tomoo, SHIMADA Takashi, OKAMURA Tomohiro, NAKASE Masahiko, TAKESHITA Kenji, KONISHI Yuki, NISHIMURA Keisuke, TSUKAMOTO Taisuke, ISHIDA Hitomi, BAN Yasutoshi, SATO Takehiko, TSUBATA Yasuhiro, Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (2) Investigation on fuel cycle based on actinide management towards sustainable use of nuclear energy (4) Cycle concept with ACM, KONISHI Yuki, SHIMADA Takashi, ISHIDA Hitomi, NISHIMURA Keisuke, BAN Yasutoshi, TSUBATA Yasuhiro, SATO Takehiko, NAKASE Masahiko, HIBI Koki, GIMA Hiromichi, YAMAMURA Tomoo, Proceedings of International Conference on Nuclear Fuel Cycle (GLOBAL2024) (Internet), (2024).
- (3) Extraction behaviors of minor actinides and rare earth elements with NTA amide extractants, SUZUKI Hideya, BAN Yasutoshi, Journal of Nuclear Science and Technology, 62, 157 (2025).

JAEA Reports


- (1) Development of zeolite column adsorption dynamics simulation code (ZAC), YAMAGISHI Isao, HATO Shinji, NISHIHARA Kenji, TSUBATA Yasuhito, et al., JAEA-Data/Code 2024-002 (2024). (in Japanese)
- (2) Development of technology for separating Am-241 in aged plutonium, <u>EMORI Tatsuya</u>, KITATSUJI Yoshihito, BAN Yasutoshi, JAEA-Technology 2024-025 (2025). (in Japanese)

Reviewers

ENDO Shunsuke, OHZU Akira, UESAKA Shinichiro, FUKUSHIMA Masahiro, SATO Tomonori, ABE Yosuke, SUZUKI Chikashi, SUN Rongwei, SATO Kaoru, OKA Toshitaka, NAKAMURA Satoshi

Editorial Board

- Chief Editor: HAYASHI Hirokazu
- Editor: KATO Chiaki

Nuclear Science and Engineering Center (NSEC) Japan Atomic Energy Agency (JAEA)

2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 Japan.

E-mail: nsed-web@jaea.go.jp

URL: https://nsec.jaea.go.jp/