# **XANES and the electronic structure of Actinide oxide**

\*Chikashi Suzuki Tsuyoshi Nishi Masami Nakada Mitsuo Akabori Masaru Hirata Yoshiyuki Kaji

Japan Atomic Energy Agency

#### **Contents**

- 1. Background and Purpose
- 2. Calculation method
- 3. Actinide oxide L<sub>III</sub> XANES
- 4. XANES and electronic structure
- 5. Electronic structure of AmO<sub>2</sub> and UO<sub>2</sub>
- 6. Electronic state of Mixed Oxide
- 7. Summery and Future consideration

### **Background**

#### Americium (Am)

- > Minor actinide (MA) accumulated in the irradiated nuclear fuel
- ➢ High and lasting radiotoxicity ⇒ Requirement of its reduction

Transmutation to stable or short-lived radionuclide

**Development of Am-oxide fuel** 

**Evaluation of the change of properties of** 

the oxide fuel with Am supplementation

Local structure and chemical state around Am in the oxide fuel

**Analysis of X-ray absorption near edge structure (XANES)** 

### **Purpose**

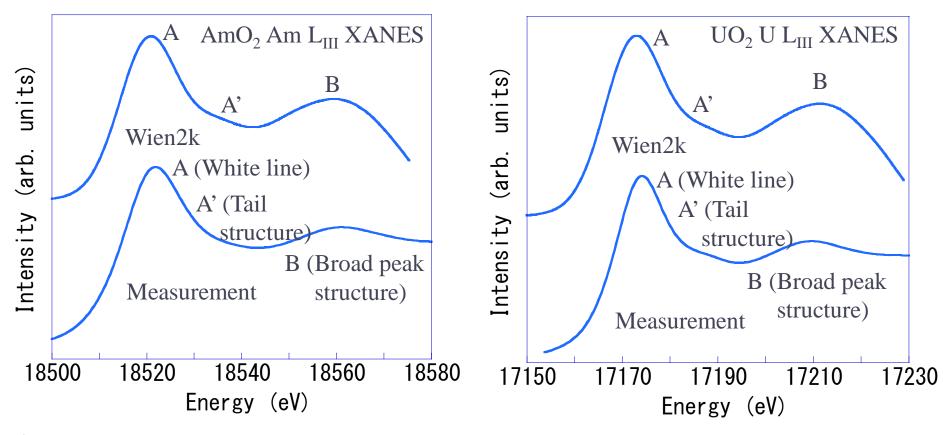
**XANES analysis of AmO<sub>2</sub> and UO<sub>2</sub>** 

- **Basic data for the evaluation of Am-oxide fuel**
- Assumption of the origin of AmO<sub>2</sub> and UO<sub>2</sub> XANES peak structure
- **Evaluation of the electronic state of AmO<sub>2</sub> and UO<sub>2</sub>**

#### **Behavior of Am and U in the oxide fuel**

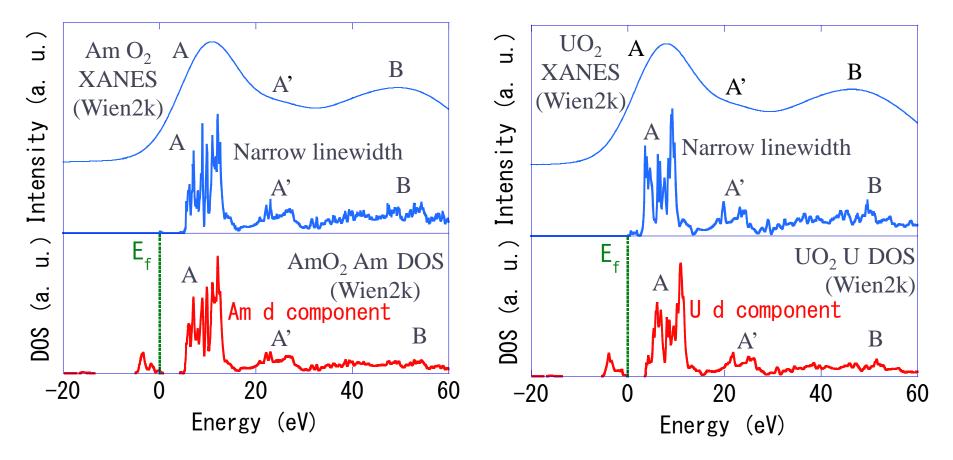
- Comparison between the electronic structure of AmO<sub>2</sub> and that of UO<sub>2</sub>
- > Electronic states of Am and U in the mixed oxide  $(Am_{0.5}U_{0.5}O_2)$

# **Calculation method**


#### Wien2k

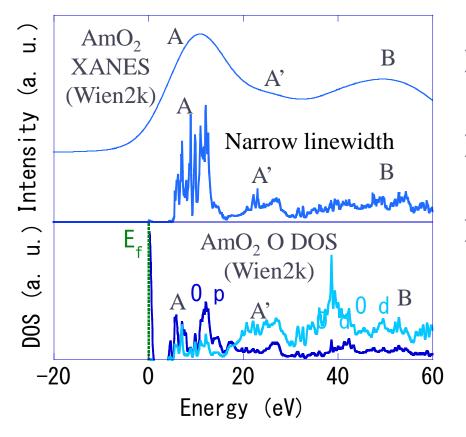
- Relativistic calculation which is necessary for actinide compounds
- Calculation and analysis for AmO<sub>2</sub> and UO<sub>2</sub> XANES
- **Electronic structure of AmO**<sub>2</sub>, UO<sub>2</sub>, and the mixed oxide

**Relativistic DV-Xα molecular orbital method** 


- Calculation considering the relativistic effect
- Charge transfer in the mixed oxide (Effective charge)

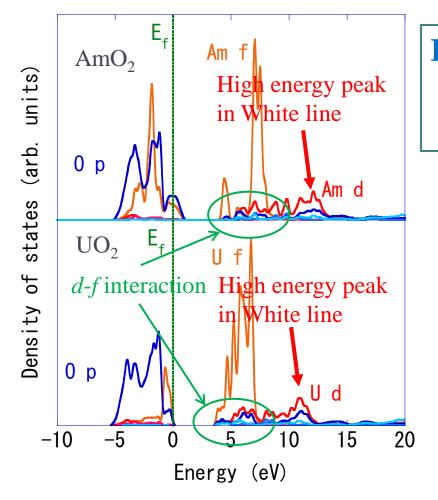
## Actinide oxide L<sub>III</sub> XANES




XANES are well reproduced with the calculation.
AmO<sub>2</sub> Am L<sub>III</sub> XANES and UO<sub>2</sub> U L<sub>III</sub> XANES are similar.
Analysis of XANES using the first principles calculation

#### **XANES and Am and U d component**



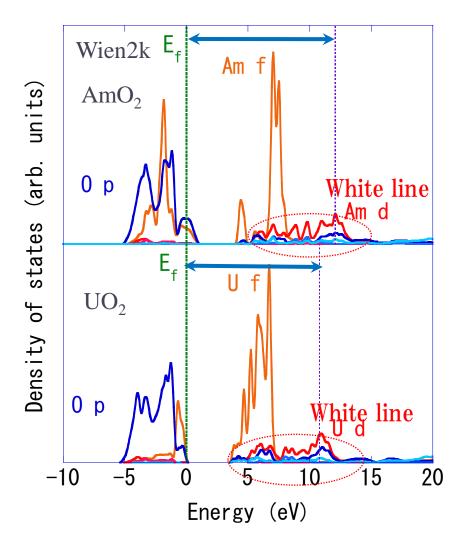

Am and U L<sub>III</sub> XANES reflect Am and U *d* component.
Theoretical spectra of AmO<sub>2</sub> and UO<sub>2</sub> are similar.

#### **XANES and O component**



- White line is created due to Am d-O p interaction.
- The tail structure is created due to Am *d*-O *d* interaction.
- Broad peak structure is created due to Am d-O d.

# **Analysis of XANES of AmO<sub>2</sub> and UO<sub>2</sub>**

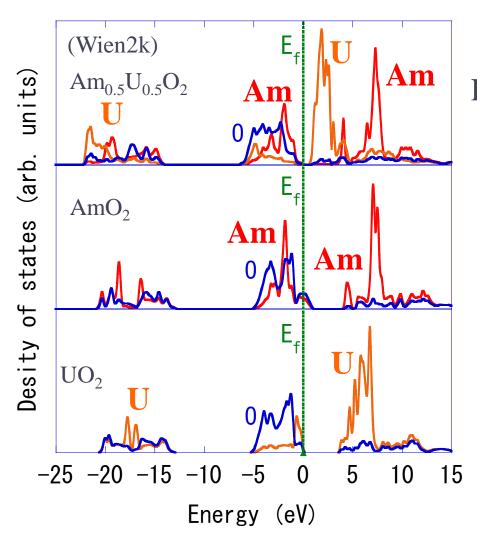



Behavior of Am and U in oxide fuel Investigation of redox property

 $UO_2 U L_{III}$  and  $AmO_2 Am L_{III} XANES$  are similar

**High energy peak in White lines are set as the standard energy** (free from *d-f* interaction)

# **Electronic structure of AmO<sub>2</sub> and UO<sub>2</sub>**




Energy of  $E_{\rm f} \rightarrow$  White line

| $AmO_2$  | $UO_2$   |  |
|----------|----------|--|
| 12.09 eV | 10.80 eV |  |

*E*<sub>f</sub> of AmO<sub>2</sub> is deeper than that of UO<sub>2</sub> Electrons are assumed to be transferred from U to Am in the oxide fuel

# **Electronic structure of Am<sub>0.5</sub>U<sub>0.5</sub>O<sub>2</sub>**



Effective charge (DV-X $\alpha$  method)

|                      | Am    | U     |
|----------------------|-------|-------|
| $AmO_2$ or $UO_2$    | +3.33 | +3.40 |
| $Am_{0.5}U_{0.5}O_2$ | +3.29 | +3.55 |

The change of the electronic state of U is more remarkable than that of Am.

#### **Summary**

- 1. AmO<sub>2</sub> Am L<sub>III</sub> and UO<sub>2</sub> U L<sub>III</sub> XANES are similar and well reproduced with the calculation.
- 2. Am and U  $L_{III}$  XANES reflect Am and U d component.
- **3.** Am L<sub>III</sub> XANES peak structures are created due to Am d-O p interaction in White line and due to Am d-O d interaction in the tail structure and the broad peak structure.
- 4. Fermi level of AmO<sub>2</sub> is deeper than that of UO<sub>2</sub>.
- 5. The change of the electronic state of U is more remarkable than that of Am in the mixed oxide.

#### **Further consideration**

- 1. XANES measurement and calculation for  $Am_2O_3$ ,  $Am_{0.5}U_{0.5}O_2$ , and  $Am_{0.05}U_{0.95}O_2$  (simulated as practical Am-oxide fuel).
- 2. Evaluation for the local structure by XANES analysis using charge density distribution
- 3. Clarification of the behavior of Am and U in  $Am_{0.05}U_{0.95}O_2$
- 4. Development of the evaluation methods for the local structure and chemical state of MA in the oxide fuel using XANES and the theoretical calculation.