

NO.100197 of Spring AESJ Mito Campus, Ibaraki University Mar. 28, 2010

Simulation of Residual Stress due to Welding in Core Shroud of Boiling Water Reactor

Yongkui Li, Yoshiyuki Kaji and Takahiro Igarashi Research Group for Nuclear Materials Modeling Nuclear Science and Energy Directorate Japan Atomic Energy Agency (JAEA)

Outlines

- Background and objective;
- Analytical method;
- Composition and properties of Type 316L stainless steel;
- Heat histories of beads in SGA and FCTDA;
- Comparison of SGA and FCTDA;
- Simulation results by FCTDAs comparing with experimental results;
- Summary and Future Work

Background and objective

Stress corrosion cracking (SCC)

Weld residual stress (WRS) around horizontal girth seams;

SCC in lower HAZ of H6a

Core shroud model in present study

Objectives

Studying the Fields of WRS in the girth seam H6a of the core shroud model

Reference: 2004, JAERI-Tech, 2004-044.

Analytical method

3D model $\pi/180$ degree (units: mm)

Method: FEM ABQUS Version 6.9 Static general analysis (SGA): ✓ No heat transfer; ✓ 9187 8-node linear brick element Fully coupled temp-displacement analysis (FCTDA): ✓ With heat transfer; ✓ 9207 8-node trilinear displacement and temperature element; ✓ Thermal boundary conditions

Three analysises

SGA	FCTDA1	FCTDA2
No heat transfer	Heat transter	Heat transfer
	Cooled in air	Cooled with water at inner upper face

Composition and properties of Type 316L stainless steel

Chemical composition (in mass.%)		Thermal conductivity, specific gravity and heat, and emission coefficient							oefficient	
C	C:	Min	Temperature °	C 20	100	200	400	600	1000	1500
≤0.03	si ≤1.00	≤2.00	Thermal conductivity kJ/mms°C	1.46E-05	1.56E-05	1.70E-05	1.97E-05	2.24E-05	2.76E-05	3.43E-05
Р	S	Ni	Specific gravit	y 7.86E-06	7.86E-06	7.86E-06	7.86E-06	7.86E-06	7.86E-06	7.86E-06
≤0.045	≤0.030	12-15	Specific heat	0.452	0.493	0.523	0.553	0.578	0.62	0.678
Cr	Fe	Мо	kJ/kg ² C	lant						
16-18	Bal.	2-3	$kJ/mm^2s^{\circ}C$ Air: 1.16e-8; Water: 6.66e-5							
rmal expansivity (10 ⁻⁵) 1.0 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2			ension stress (MPa)	00 00 200° 00 Wel	20°C -400°C -600°C d metal -800°C -1000°C	100°C	ension stress (MPa)	Base metal	20℃ 100℃ 400℃ 600℃ 800℃	
0 he	400	800 12	200 1600 —	0.00 0.01	0.02 0.03	0.04 0.	05 ⊢ 0.0	0 0.01	0.02 0.03	0.04 0.05
⊢ Tł Referen	Tem nermal e ce [.] "The	perature xpansivi	(°C) ty olume of IAN	Mechani	Strain Strain Echanical properties of weld metal and base metal IP-05" Atomic Energy Society of Japan Vol. 4					

Heat histories of weld beads for SGA and FCTDA

■SGA and FCTDA

Defining the temperature amplitude curve for SGA;

Using subroutine to produce heat in FCTDA

Max. temp.: \geq 1180°C; Layer temp.: \leq 180°C

Comparison of SGA and FCTDA

Axial stress by SGA

Axial stress by FCTDA2

Maximum tension stress is at the out surface and maximum compression stress is at inner of the wall. Simulation with FCTDA is better due to consideration of heat transfer.

BML, 3.6mm to weld metal in distance

Paths of weld metal (WM) and base metal (BML)

Distance from outer face (mm) Axial stress through the wall of model

Simulation results by FCTDAs comparing with experimental results

Axial stress in the inner and outer faces (axial stress paralleling to the axle of the core shroud, FCTDA1: Cooling in air; FCTDA2: Cooling with water)

Simulation results are better by FCTDA2 than by FCTDA1. Water cooling decreases tension stress at outer face while increases tension stress at inner face of the model. Simulation results at the base metal by FCTDA2 are not accurate according to experimental results. *Reference: "The forth volume of JANTI-VIP-05", *Atomic Energy Society of Japan*, Vol[®], 4.

Summaries:

- Three different analysises were adopted to simulate the multiplebead welding progress. The FCTDA2 can give the much better simulation results with considering heat transfer and cooling with water.
- Maximum tension stress are located at the out surface and maximum compression stress are at the inner region of the wall of the model.

Future work:

Simulation of initiation and propagation of SCC

Relaxation of residual stress

Radiation induced segregation

Radiation induced hardening

Thank you for your attentions!