Density functional calculations for small iron clusters with substitutional phosphorus

T. Nakazawa, T. Igarashi, T. Tsuru, Y. Kaji and S. Jitsukawa Japan Atomic Energy Agency

nakazawa.tetsuya@jaea.go.jp

14th International Conference on Fusion Reactor Materials (ICFRM-14) September 6-11, 2009 Sapporo, Japan

Abstract

The embrittlement is known to be caused by phosphorus (P) segregation at grain boundaries (BGs) in iron (Fe) alloy. Effects of P substitutions on binding energies and electronic structures of octahedral Fe cluster are investigated using density functional calculations in order to understand nature of bonding between P and Fe atoms at GBs. The binding energies increase in Fe_3P_3 and Fe-rich clusters while they decrease in P-rich clusters. The changes of binding energies are closely connected to the charge transfer from Fe to P atoms. The charge transfer leads to both stronger and weaker bonds in mixed Fe-P clusters. The weaker bonds due to less charge occur embrittlement. The calculations indicate that the binding energies and chemical bondings are affected by atomic configurations of P atoms in Fe-P clusters.

Background and Objective

Background

- O The embrittlement in Fe alloy under thermal or irradiation environment is the serious issue for structural materials in fusion and fission reactors.
- \bigcirc The embrittlement is closely connected to the segregation of impurities at GB.
- \bigcirc The impurity segregation at the GBs is promoted by irradiation.
- P atom is one of the impurities in Fe alloy, and is considered to be one of the embrittling elements.
- The P segregation is believed to weaken cohesion at Fe GBs.

Objective

- Understanding on effects of P atoms segregated at Fe GBs.
 - ★ We perform ab initio calculations on the changes of binding energies and structural and electronic properties of Fe₆ cluster induced by P substitutions.

Summary

Our DFT calculations predict effects of P substitutions for equilibrium geometry, binding energy and electron properties of Fe₆ clusters. Based on the calculations the effects of chemical bonding on GB embrittlement is considered. The changes of binding energies in Fe-P clusters are found to be closely connected to the charge transfer from Fe to P atoms. As shown by calculations of Fe₃P₃ and Fe-rich clusters, a small number of P atoms stabilize the Fe GBs as well as lead to the strengthening of Fe-P bonds and the weakening of Fe-Fe bonds. The weaker bondings due to less charge occur embrittlement while the stronger bondings due to more charge stabilize GBs. In contrast to this, a large number of P atoms, which is adjacent to each other, induce unstable GBs due to weaker Fe-P and P-P bondings, and the weaker bondings occur embrittlement.

Atomic configurations of GBs with P-enrichment induced by irradiation are complex. As shown by our calculations, the cause of P embrittlement is affected by the atomic configurations of P atoms in GB. Thus, the effects of more than one P segregation should not be neglected.

Computational details

- Theory: DFT-(U)B3LYP/LanL2DZ
 - Code: Gaussian03
- Clusters: $Fe_{6-x}P_x$ ($0 \le x \le 6$)
- Binding energies (E_b) : The binding energies per atom of clusters are calculated with respect to the Fe atom with M = 5 and P atom with M = 4. M means spin multiplicities.
- Natural population analysis: electron configuration, natural population and natural atomic orbital (NAO) bond order are calculated.

Binding energies, bond lengths, and NAO bond orders of Fe-P clusters

				R _e			NAO bond order		
System	Symm.	Μ	Eb	Fe-Fe	Fe-P	P-P	Fe-Fe	Fe-P	Р-Р
Fe ₆	D _{4h}	21	1.85	2.43, 2.45			0.36		
Fe₅P	C _{4v}	16	2.00	2.42, 2.53	2.49		0.28, 0.34, 0.38	0.39, 0.40	
Fe ₄ P ₂	D _{4h}	13	2.11	2.42	2.50		0.22	0.37, 0.40	
	C _{2v}	13	2.19	2.56, 2.74	2.38, 2.40	3.72	0.23, 0.28	0.49, 0.44	0.07
Fe ₃ P ₃	C _{3v}	12	1.97	2.46	2.60	2.50	0.41	0.29	0.54
	C _{2v}	10	2.06	2.46, 2.67	2.34, 2.36, 2.42	3.47	0.14, 0.12	0.46, 0.48, 0.42	0.10
Fe ₂ P ₄	D _{4h}	7	1.83		2.37	2.82		0.37, 0.38	0.37
	C _{2v}	7	1.86	2.37	2.37, 2.48	2.23, 3.07	0.25	0.48, 0.34	0.89, 0.21
FeP₅	C _{4v}	4	1.58		2.48	2.57, 2.76		0.33, 0.35	0.49, 0.35
P ₆	D _{4h}	3	1.09			2.61, 2.82			0.45, 0.26
$\mathbf{Y}(\mathbf{x})$	E _b : eV/atom, R _e : Å							∴Å	

Natural electron configurations and natural populations of Fe-P clusters (1)

System	Symm.	Atom	Natural electron configuration	Natural population
Fe ₆	D _{4h}	Fe(1-4)	[core]4s ^{1.09} 3d ^{6.81} 4p ^{0.08} 5s ^{0.01} 4d ^{0.02}	0.00
		Fe(5, 6)	[core]4s ^{1.09} 3d ^{6.80} 4p ^{0.08} 5s ^{0.01} 4d ^{0.02}	0.01
Fe₅P	C _{4v}	Fe(1, 3)	[core]4s ^{0.86} 3d ^{6.82} 4p ^{0.06} 4d ^{0.01} 5s ^{0.01} 4d ^{0.01}	0.24
		Fe(2, 4)	[core]4s ^{0.74} 3d ^{6.93} 4p ^{0.06} 4d ^{0.01}	0.25
		P(5)	[core]3s ^{1.90} 3p ^{4.01}	-0.91
		Fe(6)	[core]4s ^{1.18} 3d ^{6.76} 4p ^{0.10} 5s ^{0.02} 4d ^{0.01}	-0.06
Fe ₄ P ₂	D _{4h}	Fe(1, 3)	[core]4s ^{0.58} 3d ^{6.84} 4p ^{0.04} 4d ^{0.01}	0.53
		Fe(2, 4)	[core]4s ^{0.62} 3d ^{6.92} 4p ^{0.03} 4d ^{0.01} 5p ^{0.01}	0.41
		P(5, 6)	[core]3s ^{1.91} 3p ^{4.02}	-0.94
	C _{2v}	Fe(1,2)	[core]4s ^{0.85} 3d ^{6.82} 4p ^{0.07} 4d ^{0.01}	0.24
		P(3,4)	[core]3s ^{1.91} 3p ^{3.88}	-0.80
		Fe(5,6)	[core]4s ^{0.60} 3d ^{6.78} 4p ^{0.05} 4d ^{0.02}	0.55
Fe ₃ P ₃	C _{3v}	Fe(1, 2, 5)	[core]4s ^{0.81} 3d ^{6.64} 4p ^{0.08} 4d ^{0.01}	0.44
		P(3, 4, 6)	[core]3s ^{1.90} 3p ^{3.54}	-0.44

Natural electron configurations and natural populations of Fe-P clusters (2)

System	Symm.	Atom	Natural electron configuration	Natural population
Fe ₃ P ₃	C _{2v}	Fe(1)	[core]4s ^{0.54} 3d ^{6.85} 4p ^{0.05} 4d ^{0.01}	0.55
		P(2, 4)	[core]3s ^{1.91} 3p ^{3.80}	-0.72
		P(3)	[core]3s ^{1.93} 3p ^{3.48}	-0.42
		Fe(5, 6)	[core]4s ^{0.52} 3d ^{6.76} 4p ^{0.05} 4d ^{0.02} 5p ^{0.01}	0.65
Fe ₂ P ₄	D _{4h}	P(1-4)	[core]3s ^{1.91} 3p ^{3.36}	-0.27
		Fe(5, 6)	[core]4s ^{0.38} 3d ^{7.01} 4p ^{0.04} 4d ^{0.02}	0.54
	C _{2v}	Fe(1, 2)	[core]4s ^{0.55} 3d ^{6.77} 4p ^{0.06} 4d ^{0.02} 5p ^{0.01}	0.61
		P(3, 4)	[core]3s ^{1.87} 3p ^{3.26} 4p ^{0.01}	-0.14
		P(5,6)	[core]3s ^{1.93} 3p ^{3.53}	-0.47
FeP₅	C _{4v}	P(1, 3)	[core]3s ^{1.91} 3p ^{3.29}	-0.21
		P(2, 4)	[core]3s ^{1.91} 3p ^{3.22}	-0.14
		Fe(5)	[core]4s ^{0.41} 3d ^{6.88} 4p ^{0.05} 4d ^{0.01}	0.64
		P(6)	[core]3s ^{1.87} 3p ^{3.07} 4p ^{0.01}	0.05
P ₆	D _{4h}	P(1-4)	[core]3s ^{1.93} 3p ^{3.09}	-0.02

Calculations on Fe₆ cluster

- Our calculated bond lengths are consistent with the previous results (2.29 - 2.53 Å) and are very close to nearest neighbour distance of bulk iron (2.48 Å), while calculated binding energy is smaller than the previous results (3.77 eV/ atom).
- The electron configuration calculated for Fe atom is 4s^{1.09}3d^{6.80} which is very close to that of the metal or large clusters (4s¹3d⁷).

Calculations on P₆ cluster

- For P₆ (D_{4h}) cluster, our calculations find the M=3 ground state with bond length of 2.61 - 2.82 Å and binding energy of 1.09 eV/atom.
- The previous LSDA calculations based on the Car-Parrinello method on various structure of P₆ have predicted that bond length range from 2.01 to 2.40 Å. The binding energies of P₆ (C_{2v} and D_{3h}) clusters calculated using the generalized gradient approximations have predicted to be 3.06 and 3.02 eV/atom, respectively.
- The above differences between our calculations and previous calculations result from different treatment of electron in clusters rather than differences in structure and exchange-correlation energy. The spin-restricted calculations generally lead to shorter bond lengths and larger binding energies because of neglecting the spin dependence of exchange and correlation.

Effects of P substitutions (I)

Effects on binding energy:

- \bigcirc Fe₃P₃ and Fe-rich clusters have larger binding energies.
- O P-rich clusters have smaller binding energies.

Effects on bonding strength:

- In the Fe₃P₃ (C_{2v}) and Fe-rich clusters, the stronger Fe-P and weaker Fe-Fe bondings caused by the charge transfer due to the P substitutions.
- O In Fe₃P₃ (C_{3v}) cluster, stabilization of Fe3 and P3 units lead to the weaker Fe-P bonding.
- In P-rich clusters, decrease in binding energies corresponds to the weaker Fe-P and P-P bondings.

Effects of P substitutions (2)

Effects on electronic structure:

The P substitution causes the charge transfer from Fe to P atoms.
The charge transfer leads to the stronger and weaker bondings in Fe-P clusters.

The P embrittlement of Fe GB is closely connected with the change of electronic structure due to atomic configurations of P atoms in GBs.

Thank you for your stop.

If you have a interest in this work, please contact me.

Email: nakazawa.tetsuya@jaea.go.jp